/* * Double-precision SVE cbrt(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f64.h" const static struct data { float64_t poly[4]; float64_t table[5]; float64_t one_third, two_thirds, shift; int64_t exp_bias; uint64_t tiny_bound, thresh; } data = { /* Generated with FPMinimax in [0.5, 1]. */ .poly = { 0x1.c14e8ee44767p-2, 0x1.dd2d3f99e4c0ep-1, -0x1.08e83026b7e74p-1, 0x1.2c74eaa3ba428p-3, }, /* table[i] = 2^((i - 2) / 3). */ .table = { 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0, 0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0, }, .one_third = 0x1.5555555555555p-2, .two_thirds = 0x1.5555555555555p-1, .shift = 0x1.8p52, .exp_bias = 1022, .tiny_bound = 0x0010000000000000, /* Smallest normal. */ .thresh = 0x7fe0000000000000, /* asuint64 (infinity) - tiny_bound. */ }; #define MantissaMask 0x000fffffffffffff #define HalfExp 0x3fe0000000000000 static svfloat64_t NOINLINE special_case (svfloat64_t x, svfloat64_t y, svbool_t special) { return sv_call_f64 (cbrt, x, y, special); } static inline svfloat64_t shifted_lookup (const svbool_t pg, const float64_t *table, svint64_t i) { return svld1_gather_index (pg, table, svadd_x (pg, i, 2)); } /* Approximation for double-precision vector cbrt(x), using low-order polynomial and two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. _ZGVsMxv_cbrt (0x0.3fffb8d4413f3p-1022) got 0x1.965f53b0e5d97p-342 want 0x1.965f53b0e5d95p-342. */ svfloat64_t SV_NAME_D1 (cbrt) (svfloat64_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svfloat64_t ax = svabs_x (pg, x); svuint64_t iax = svreinterpret_u64 (ax); svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), iax); /* Subnormal, +/-0 and special values. */ svbool_t special = svcmpge (pg, svsub_x (pg, iax, d->tiny_bound), d->thresh); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexp, which gets subnormal values wrong - these have to be special-cased as a result. */ svfloat64_t m = svreinterpret_f64 (svorr_x ( pg, svand_x (pg, svreinterpret_u64 (x), MantissaMask), HalfExp)); svint64_t e = svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, iax, 52)), d->exp_bias); /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ svfloat64_t p = sv_pairwise_poly_3_f64_x (pg, m, svmul_x (pg, m, m), d->poly); /* Two iterations of Newton's method for iteratively approximating cbrt. */ svfloat64_t m_by_3 = svmul_x (pg, m, d->one_third); svfloat64_t a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, p, p)), p, d->two_thirds); a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, a, a)), a, d->two_thirds); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ svfloat64_t eb3f = svmul_x (pg, svcvt_f64_x (pg, e), d->one_third); svint64_t ey = svcvt_s64_x (pg, eb3f); svint64_t em3 = svmls_x (pg, e, ey, 3); svfloat64_t my = shifted_lookup (pg, d->table, em3); my = svmul_x (pg, my, a); /* Vector version of ldexp. */ svfloat64_t y = svscale_x (pg, my, ey); if (unlikely (svptest_any (pg, special))) return special_case ( x, svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)), special); /* Copy sign. */ return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)); } PL_SIG (SV, D, 1, cbrt, -10.0, 10.0) PL_TEST_ULP (SV_NAME_D1 (cbrt), 1.30) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (cbrt), 0, inf, 1000000)