/* * Double-precision scalar sinpi function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #define _GNU_SOURCE #include #include "mathlib.h" #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_scalar_f64.h" /* Taylor series coefficents for sin(pi * x). C2 coefficient (orginally ~=5.16771278) has been split into two parts: C2_hi = 4, C2_lo = C2 - C2_hi (~=1.16771278) This change in magnitude reduces floating point rounding errors. C2_hi is then reintroduced after the polynomial approxmation. */ static const double poly[] = { 0x1.921fb54442d184p1, -0x1.2aef39896f94bp0, 0x1.466bc6775ab16p1, -0x1.32d2cce62dc33p-1, 0x1.507834891188ep-4, -0x1.e30750a28c88ep-8, 0x1.e8f48308acda4p-12, -0x1.6fc0032b3c29fp-16, 0x1.af86ae521260bp-21, -0x1.012a9870eeb7dp-25 }; #define Shift 0x1.8p+52 /* Approximation for scalar double-precision sinpi(x). Maximum error: 3.03 ULP: sinpi(0x1.a90da2818f8b5p+7) got 0x1.fe358f255a4b3p-1 want 0x1.fe358f255a4b6p-1. */ double sinpi (double x) { if (isinf (x)) return __math_invalid (x); double r = asdouble (asuint64 (x) & ~0x8000000000000000); uint64_t sign = asuint64 (x) & 0x8000000000000000; /* Edge cases for when sinpif should be exactly 0. (Integers) 0x1p53 is the limit for single precision to store any decimal places. */ if (r >= 0x1p53) return 0; /* If x is an integer, return 0. */ uint64_t m = (uint64_t) r; if (r == m) return 0; /* For very small inputs, squaring r causes underflow. Values below this threshold can be approximated via sinpi(x) ≈ pi*x. */ if (r < 0x1p-63) return M_PI * x; /* Any non-integer values >= 0x1x51 will be int + 0.5. These values should return exactly 1 or -1. */ if (r >= 0x1p51) { uint64_t iy = ((m & 1) << 63) ^ asuint64 (1.0); return asdouble (sign ^ iy); } /* n = rint(|x|). */ double n = r + Shift; sign ^= (asuint64 (n) << 63); n = n - Shift; /* r = |x| - n (range reduction into -1/2 .. 1/2). */ r = r - n; /* y = sin(r). */ double r2 = r * r; double y = horner_9_f64 (r2, poly); y = y * r; /* Reintroduce C2_hi. */ y = fma (-4 * r2, r, y); /* Copy sign of x to sin(|x|). */ return asdouble (asuint64 (y) ^ sign); } PL_SIG (S, D, 1, sinpi, -0.9, 0.9) PL_TEST_ULP (sinpi, 2.53) PL_TEST_SYM_INTERVAL (sinpi, 0, 0x1p-63, 5000) PL_TEST_SYM_INTERVAL (sinpi, 0x1p-63, 0.5, 10000) PL_TEST_SYM_INTERVAL (sinpi, 0.5, 0x1p51, 10000) PL_TEST_SYM_INTERVAL (sinpi, 0x1p51, inf, 10000)