/* * Double-precision log(1+x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "poly_scalar_f64.h" #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" #define Ln2Hi 0x1.62e42fefa3800p-1 #define Ln2Lo 0x1.ef35793c76730p-45 #define HfRt2Top 0x3fe6a09e /* top32(asuint64(sqrt(2)/2)). */ #define OneMHfRt2Top \ 0x00095f62 /* top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)). */ #define OneTop12 0x3ff #define BottomMask 0xffffffff #define OneMHfRt2 0x3fd2bec333018866 #define Rt2MOne 0x3fda827999fcef32 #define AbsMask 0x7fffffffffffffff #define ExpM63 0x3c00 static inline double eval_poly (double f) { double f2 = f * f; double f4 = f2 * f2; double f8 = f4 * f4; return estrin_18_f64 (f, f2, f4, f8, f8 * f8, __log1p_data.coeffs); } /* log1p approximation using polynomial on reduced interval. Largest observed errors are near the lower boundary of the region where k is 0. Maximum measured error: 1.75ULP. log1p(-0x1.2e1aea97b3e5cp-2) got -0x1.65fb8659a2f9p-2 want -0x1.65fb8659a2f92p-2. */ double log1p (double x) { uint64_t ix = asuint64 (x); uint64_t ia = ix & AbsMask; uint32_t ia16 = ia >> 48; /* Handle special cases first. */ if (unlikely (ia16 >= 0x7ff0 || ix >= 0xbff0000000000000 || ix == 0x8000000000000000)) { if (ix == 0x8000000000000000 || ix == 0x7ff0000000000000) { /* x == -0 => log1p(x) = -0. x == Inf => log1p(x) = Inf. */ return x; } if (ix == 0xbff0000000000000) { /* x == -1 => log1p(x) = -Inf. */ return __math_divzero (-1); ; } if (ia16 >= 0x7ff0) { /* x == +/-NaN => log1p(x) = NaN. */ return __math_invalid (asdouble (ia)); } /* x < -1 => log1p(x) = NaN. x == -Inf => log1p(x) = NaN. */ return __math_invalid (x); } /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f is in [sqrt(2)/2, sqrt(2)]): log1p(x) = k*log(2) + log1p(f). f may not be representable exactly, so we need a correction term: let m = round(1 + x), c = (1 + x) - m. c << m: at very small x, log1p(x) ~ x, hence: log(1+x) - log(m) ~ c/m. We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ uint64_t sign = ix & ~AbsMask; if (ia <= OneMHfRt2 || (!sign && ia <= Rt2MOne)) { if (unlikely (ia16 <= ExpM63)) { /* If exponent of x <= -63 then shortcut the polynomial and avoid underflow by just returning x, which is exactly rounded in this region. */ return x; } /* If x is in [sqrt(2)/2 - 1, sqrt(2) - 1] then we can shortcut all the logic below, as k = 0 and f = x and therefore representable exactly. All we need is to return the polynomial. */ return fma (x, eval_poly (x) * x, x); } /* Obtain correctly scaled k by manipulation in the exponent. */ double m = x + 1; uint64_t mi = asuint64 (m); uint32_t u = (mi >> 32) + OneMHfRt2Top; int32_t k = (int32_t) (u >> 20) - OneTop12; /* Correction term c/m. */ double cm = (x - (m - 1)) / m; /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ uint32_t utop = (u & 0x000fffff) + HfRt2Top; uint64_t u_red = ((uint64_t) utop << 32) | (mi & BottomMask); double f = asdouble (u_red) - 1; /* Approximate log1p(x) on the reduced input using a polynomial. Because log1p(0)=0 we choose an approximation of the form: x + C0*x^2 + C1*x^3 + C2x^4 + ... Hence approximation has the form f + f^2 * P(f) where P(x) = C0 + C1*x + C2x^2 + ... */ double p = fma (f, eval_poly (f) * f, f); double kd = k; double y = fma (Ln2Lo, kd, cm); return y + fma (Ln2Hi, kd, p); } PL_SIG (S, D, 1, log1p, -0.9, 10.0) PL_TEST_ULP (log1p, 1.26) PL_TEST_SYM_INTERVAL (log1p, 0.0, 0x1p-23, 50000) PL_TEST_SYM_INTERVAL (log1p, 0x1p-23, 0.001, 50000) PL_TEST_SYM_INTERVAL (log1p, 0.001, 1.0, 50000) PL_TEST_SYM_INTERVAL (log1p, 1.0, inf, 5000)