/* * Double-precision e^x - 1 function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "poly_scalar_f64.h" #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" #define InvLn2 0x1.71547652b82fep0 #define Ln2hi 0x1.62e42fefa39efp-1 #define Ln2lo 0x1.abc9e3b39803fp-56 #define Shift 0x1.8p52 /* 0x1p-51, below which expm1(x) is within 2 ULP of x. */ #define TinyBound 0x3cc0000000000000 /* Above which expm1(x) overflows. */ #define BigBound 0x1.63108c75a1937p+9 /* Below which expm1(x) rounds to 1. */ #define NegBound -0x1.740bf7c0d927dp+9 #define AbsMask 0x7fffffffffffffff /* Approximation for exp(x) - 1 using polynomial on a reduced interval. The maximum error observed error is 2.17 ULP: expm1(0x1.63f90a866748dp-2) got 0x1.a9af56603878ap-2 want 0x1.a9af566038788p-2. */ double expm1 (double x) { uint64_t ix = asuint64 (x); uint64_t ax = ix & AbsMask; /* Tiny, +Infinity. */ if (ax <= TinyBound || ix == 0x7ff0000000000000) return x; /* +/-NaN. */ if (ax > 0x7ff0000000000000) return __math_invalid (x); /* Result is too large to be represented as a double. */ if (x >= 0x1.63108c75a1937p+9) return __math_oflow (0); /* Result rounds to -1 in double precision. */ if (x <= NegBound) return -1; /* Reduce argument to smaller range: Let i = round(x / ln2) and f = x - i * ln2, then f is in [-ln2/2, ln2/2]. exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 where 2^i is exact because i is an integer. */ double j = fma (InvLn2, x, Shift) - Shift; int64_t i = j; double f = fma (j, -Ln2hi, x); f = fma (j, -Ln2lo, f); /* Approximate expm1(f) using polynomial. Taylor expansion for expm1(x) has the form: x + ax^2 + bx^3 + cx^4 .... So we calculate the polynomial P(f) = a + bf + cf^2 + ... and assemble the approximation expm1(f) ~= f + f^2 * P(f). */ double f2 = f * f; double f4 = f2 * f2; double p = fma (f2, estrin_10_f64 (f, f2, f4, f4 * f4, __expm1_poly), f); /* Assemble the result, using a slight rearrangement to achieve acceptable accuracy. expm1(x) ~= 2^i * (p + 1) - 1 Let t = 2^(i - 1). */ double t = ldexp (0.5, i); /* expm1(x) ~= 2 * (p * t + (t - 1/2)). */ return 2 * fma (p, t, t - 0.5); } PL_SIG (S, D, 1, expm1, -9.9, 9.9) PL_TEST_ULP (expm1, 1.68) PL_TEST_SYM_INTERVAL (expm1, 0, 0x1p-51, 1000) PL_TEST_INTERVAL (expm1, 0x1p-51, 0x1.63108c75a1937p+9, 100000) PL_TEST_INTERVAL (expm1, -0x1p-51, -0x1.740bf7c0d927dp+9, 100000) PL_TEST_INTERVAL (expm1, 0x1.63108c75a1937p+9, inf, 100) PL_TEST_INTERVAL (expm1, -0x1.740bf7c0d927dp+9, -inf, 100)