/* * Single-precision e^x function. * * Copyright (c) 2017-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include #include #include "math_config.h" /* EXPF_TABLE_BITS = 5 EXPF_POLY_ORDER = 3 ULP error: 0.502 (nearest rounding.) Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) Wrong count: 170635 (all nearest rounding wrong results with fma.) Non-nearest ULP error: 1 (rounded ULP error) */ #define N (1 << EXPF_TABLE_BITS) #define InvLn2N __expf_data.invln2_scaled #define T __expf_data.tab #define C __expf_data.poly_scaled static inline uint32_t top12 (float x) { return asuint (x) >> 20; } float optr_aor_exp_f32 (float x) { uint32_t abstop; uint64_t ki, t; /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ double_t kd, xd, z, r, r2, y, s; xd = (double_t) x; abstop = top12 (x) & 0x7ff; if (unlikely (abstop >= top12 (88.0f))) { /* |x| >= 88 or x is nan. */ if (asuint (x) == asuint (-INFINITY)) return 0.0f; if (abstop >= top12 (INFINITY)) return x + x; if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */ return __math_oflowf (0); if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */ return __math_uflowf (0); } /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */ z = InvLn2N * xd; /* Round and convert z to int, the result is in [-150*N, 128*N] and ideally nearest int is used, otherwise the magnitude of r can be bigger which gives larger approximation error. */ kd = round (z); ki = lround (z); r = z - kd; /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ t = T[ki % N]; t += ki << (52 - EXPF_TABLE_BITS); s = asdouble (t); z = C[0] * r + C[1]; r2 = r * r; y = C[2] * r + 1; y = z * r2 + y; y = y * s; return eval_as_float (y); }