/* * Double-precision cbrt(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "pl_sig.h" #include "pl_test.h" PL_SIG (S, D, 1, cbrt, -10.0, 10.0) #define AbsMask 0x7fffffffffffffff #define TwoThirds 0x1.5555555555555p-1 #define C(i) __cbrt_data.poly[i] #define T(i) __cbrt_data.table[i] /* Approximation for double-precision cbrt(x), using low-order polynomial and two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0 want 0x1.965fe72821e99p+0. */ double cbrt (double x) { uint64_t ix = asuint64 (x); uint64_t iax = ix & AbsMask; uint64_t sign = ix & ~AbsMask; if (unlikely (iax == 0 || iax == 0x7f80000000000000)) return x; /* |x| = m * 2^e, where m is in [0.5, 1.0]. We can easily decompose x into m and e using frexp. */ int e; double m = frexp (asdouble (iax), &e); /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ double p_01 = fma (C (1), m, C (0)); double p_23 = fma (C (3), m, C (2)); double p = fma (p_23, m * m, p_01); /* Two iterations of Newton's method for iteratively approximating cbrt. */ double m_by_3 = m / 3; double a = fma (TwoThirds, p, m_by_3 / (p * p)); a = fma (TwoThirds, a, m_by_3 / (a * a)); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)). Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3. i is an integer in [-2, 2], so t can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. Which can be done easily using ldexp. */ return asdouble (asuint64 (ldexp (a * T (2 + e % 3), e / 3)) | sign); } PL_TEST_ULP (cbrt, 1.30) PL_TEST_INTERVAL (cbrt, 0, inf, 1000000) PL_TEST_INTERVAL (cbrt, -0, -inf, 1000000)