/* * Double-precision atanh(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "poly_scalar_f64.h" #include "pl_sig.h" #include "pl_test.h" #define AbsMask 0x7fffffffffffffff #define Half 0x3fe0000000000000 #define One 0x3ff0000000000000 #define Ln2Hi 0x1.62e42fefa3800p-1 #define Ln2Lo 0x1.ef35793c76730p-45 #define OneMHfRt2Top \ 0x00095f62 /* top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)). */ #define OneTop12 0x3ff #define HfRt2Top 0x3fe6a09e /* top32(asuint64(sqrt(2)/2)). */ #define BottomMask 0xffffffff static inline double log1p_inline (double x) { /* Helper for calculating log(1 + x) using order-18 polynomial on a reduced interval. Copied from log1p_2u.c, with no special-case handling. See that file for details of the algorithm. */ double m = x + 1; uint64_t mi = asuint64 (m); /* Decompose x + 1 into (f + 1) * 2^k, with k chosen such that f is in [sqrt(2)/2, sqrt(2)]. */ uint32_t u = (mi >> 32) + OneMHfRt2Top; int32_t k = (int32_t) (u >> 20) - OneTop12; uint32_t utop = (u & 0x000fffff) + HfRt2Top; uint64_t u_red = ((uint64_t) utop << 32) | (mi & BottomMask); double f = asdouble (u_red) - 1; /* Correction term for round-off in f. */ double cm = (x - (m - 1)) / m; /* Approximate log1p(f) with polynomial. */ double f2 = f * f; double f4 = f2 * f2; double f8 = f4 * f4; double p = fma ( f, estrin_18_f64 (f, f2, f4, f8, f8 * f8, __log1p_data.coeffs) * f, f); /* Recombine log1p(x) = k*log2 + log1p(f) + c/m. */ double kd = k; double y = fma (Ln2Lo, kd, cm); return y + fma (Ln2Hi, kd, p); } /* Approximation for double-precision inverse tanh(x), using a simplified version of log1p. Greatest observed error is 3.00 ULP: atanh(0x1.e58f3c108d714p-4) got 0x1.e7da77672a647p-4 want 0x1.e7da77672a64ap-4. */ double atanh (double x) { uint64_t ix = asuint64 (x); uint64_t sign = ix & ~AbsMask; uint64_t ia = ix & AbsMask; if (unlikely (ia == One)) return __math_divzero (sign >> 32); if (unlikely (ia > One)) return __math_invalid (x); double halfsign = asdouble (Half | sign); double ax = asdouble (ia); return halfsign * log1p_inline ((2 * ax) / (1 - ax)); } PL_SIG (S, D, 1, atanh, -1.0, 1.0) PL_TEST_ULP (atanh, 3.00) PL_TEST_SYM_INTERVAL (atanh, 0, 0x1p-23, 10000) PL_TEST_SYM_INTERVAL (atanh, 0x1p-23, 1, 90000) PL_TEST_SYM_INTERVAL (atanh, 1, inf, 100)