/* * Single-precision atan(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "atanf_common.h" #include "pl_sig.h" #include "pl_test.h" #define PiOver2 0x1.921fb6p+0f #define AbsMask 0x7fffffff #define TinyBound 0x30800000 /* asuint(0x1p-30). */ #define BigBound 0x4e800000 /* asuint(0x1p30). */ #define One 0x3f800000 /* Approximation of single-precision atan(x) based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using z=-1/x and shift = pi/2. Maximum error is 2.88 ulps: atanf(0x1.0565ccp+0) got 0x1.97771p-1 want 0x1.97770ap-1. */ float atanf (float x) { uint32_t ix = asuint (x); uint32_t sign = ix & ~AbsMask; uint32_t ia = ix & AbsMask; if (unlikely (ia < TinyBound)) /* Avoid underflow by returning x. */ return x; if (unlikely (ia > BigBound)) { if (ia > 0x7f800000) /* Propagate NaN. */ return __math_invalidf (x); /* atan(x) rounds to PiOver2 for large x. */ return asfloat (asuint (PiOver2) ^ sign); } float z, az, shift; if (ia > One) { /* For x > 1, use atan(x) = pi / 2 + atan(-1 / x). */ z = -1.0f / x; shift = PiOver2; /* Use absolute value only when needed (odd powers of z). */ az = -fabsf (z); } else { /* For x < 1, approximate atan(x) directly. */ z = x; az = asfloat (ia); shift = 0; } /* Calculate polynomial, shift + z + z^3 * P(z^2). */ float y = eval_poly (z, az, shift); /* Copy sign. */ return asfloat (asuint (y) ^ sign); } PL_SIG (S, F, 1, atan, -10.0, 10.0) PL_TEST_ULP (atanf, 2.38) PL_TEST_SYM_INTERVAL (atanf, 0, 0x1p-30, 5000) PL_TEST_SYM_INTERVAL (atanf, 0x1p-30, 1, 40000) PL_TEST_SYM_INTERVAL (atanf, 1, 0x1p30, 40000) PL_TEST_SYM_INTERVAL (atanf, 0x1p30, inf, 1000)