// polynomial for approximating sin(x) // // Copyright (c) 2019, Arm Limited. // SPDX-License-Identifier: MIT deg = 7; // polynomial degree a = -pi/4; // interval b = pi/4; // find even polynomial with minimal abs error compared to sin(x)/x // account for /x deg = deg-1; // f = sin(x)/x; f = 1; c = 1; for i from 1 to 60 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*x^(2*i)/c; }; // return p that minimizes |f(x) - poly(x) - x^d*p(x)| approx = proc(poly,d) { return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = 1; for i from 1 to deg/2 do { p = roundcoefficients(approx(poly,2*i), [|D ...|]); poly = poly + x^(2*i)*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); print("abs error:", accurateinfnorm(sin(x)-x*poly(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);