// polynomial for approximating log(1+x) // // Copyright (c) 2019, Arm Limited. // SPDX-License-Identifier: MIT deg = 6; // poly degree // interval ~= 1/(2*N), where N is the table entries a = -0x1.fp-9; b = 0x1.fp-9; // find log(1+x) polynomial with minimal absolute error f = log(1+x); // return p that minimizes |f(x) - poly(x) - x^d*p(x)| approx = proc(poly,d) { return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = x; for i from 2 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30)); // relative error computation fails if f(0)==0 // g = f(x)/x = log(1+x)/x; using taylor series g = 0; for i from 0 to 60 do { g = g + (-x)^i/(i+1); }; print("rel error:", accurateinfnorm(1-poly(x)/x/g(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);