// polynomial for approximating log2(1+x) // // Copyright (c) 2019, Arm Limited. // SPDX-License-Identifier: MIT deg = 11; // poly degree // |log2(1+x)| > 0x1p-4 outside the interval a = -0x1.5b51p-5; b = 0x1.6ab2p-5; ln2 = evaluate(log(2),0); invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits invln2lo = double(1/ln2 - invln2hi); // find log2(1+x)/x polynomial with minimal relative error // (minimal relative error polynomial for log2(1+x) is the same * x) deg = deg-1; // because of /x // f = log(1+x)/x; using taylor series f = 0; for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; f = f/ln2; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = invln2hi + invln2lo; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("invln2hi:", invln2hi); print("invln2lo:", invln2lo); print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);