/* * Double-precision scalar tanpi(x) function. * * Copyright (c) 2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #include "poly_scalar_f64.h" #define SIGN_MASK 0x8000000000000000 const static struct tanpi_data { double tan_poly[14], cot_poly[9], pi, invpi; } tanpi_data = { /* Coefficents for tan(pi * x). */ .tan_poly = { 0x1.4abbce625be52p3, 0x1.466bc6775b0f9p5, 0x1.45fff9b426f5ep7, 0x1.45f4730dbca5cp9, 0x1.45f3265994f85p11, 0x1.45f4234b330cap13, 0x1.45dca11be79ebp15, 0x1.47283fc5eea69p17, 0x1.3a6d958cdefaep19, 0x1.927896baee627p21, -0x1.89333f6acd922p19, 0x1.5d4e912bb8456p27, -0x1.a854d53ab6874p29, 0x1.1b76de7681424p32, }, /* Coefficents for cot(pi * x). */ .cot_poly = { -0x1.0c152382d7366p0, -0x1.60c8539c1d316p-1, -0x1.4b9a2f3516354p-1, -0x1.47474060b6ba8p-1, -0x1.464633ad9dcb1p-1, -0x1.45ff229d7edd6p-1, -0x1.46d8dbf492923p-1, -0x1.3873892311c6bp-1, -0x1.b2f3d0ff96d73p-1, }, .pi = 0x1.921fb54442d18p1, .invpi = 0x1.45f306dc9c883p-2, }; /* Double-precision scalar tanpi(x) implementation. Maximum error 2.19 ULP: tanpi(0x1.68847e177a855p-2) got 0x1.fe9a0ff9bb9d7p+0 want 0x1.fe9a0ff9bb9d5p+0. */ double arm_math_tanpi (double x) { uint64_t xabs_12 = asuint64 (x) >> 52 & 0x7ff; /* x >= 0x1p54. */ if (unlikely (xabs_12 >= 0x434)) { /* tanpi(+/-inf) and tanpi(+/-nan) = nan. */ if (unlikely (xabs_12 == 0x7ff)) { return __math_invalid (x); } uint64_t x_sign = asuint64 (x) & SIGN_MASK; return asdouble (x_sign); } const struct tanpi_data *d = ptr_barrier (&tanpi_data); double rounded = round (x); if (unlikely (rounded == x)) { /* If x == 0, return with sign. */ if (x == 0) { return x; } /* Otherwise, return zero with alternating sign. */ int64_t m = (int64_t) rounded; if (x < 0) { return m & 1 ? 0.0 : -0.0; } else { return m & 1 ? -0.0 : 0.0; } } double x_reduced = x - rounded; double abs_x_reduced = 0.5 - fabs (x_reduced); /* Prevent underflow exceptions. x <= 0x1p-63. */ if (unlikely (xabs_12 < 0x3c0)) { return d->pi * x; } double result, offset, scale; /* Test 0.25 < abs_x < 0.5 independent from abs_x_reduced. */ double x2 = x + x; int64_t rounded_x2 = (int64_t) round (x2); if (rounded_x2 & 1) { double r_x = abs_x_reduced; double r_x2 = r_x * r_x; double r_x4 = r_x2 * r_x2; uint64_t sign = asuint64 (x_reduced) & SIGN_MASK; r_x = asdouble (asuint64 (r_x) ^ sign); // calculate sign for half-fractional inf values uint64_t is_finite = asuint64 (abs_x_reduced); uint64_t is_odd = (rounded_x2 & 2) << 62; uint64_t is_neg = rounded_x2 & SIGN_MASK; uint64_t keep_sign = is_finite | (is_odd ^ is_neg); offset = d->invpi / (keep_sign ? r_x : -r_x); scale = r_x; result = pw_horner_8_f64 (r_x2, r_x4, d->cot_poly); } else { double r_x2 = x_reduced * x_reduced; double r_x4 = r_x2 * r_x2; offset = d->pi * x_reduced; scale = x_reduced * r_x2; result = pw_horner_13_f64 (r_x2, r_x4, d->tan_poly); } return fma (scale, result, offset); } #if WANT_EXPERIMENTAL_MATH double tanpi (double x) { return arm_math_tanpi (x); } #endif #if WANT_TRIGPI_TESTS TEST_ULP (arm_math_tanpi, 1.69) TEST_SYM_INTERVAL (arm_math_tanpi, 0, 0x1p-63, 50000) TEST_SYM_INTERVAL (arm_math_tanpi, 0x1p-63, 0.5, 100000) TEST_SYM_INTERVAL (arm_math_tanpi, 0.5, 0x1p53, 100000) TEST_SYM_INTERVAL (arm_math_tanpi, 0x1p53, inf, 100000) #endif