/* * Core approximation for single-precision vector sincos * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" const static struct sv_sincosf_data { float poly_sin[3], poly_cos[3], pio2[3], inv_pio2, shift, range_val; } sv_sincosf_data = { .poly_sin = { /* Generated using Remez, odd coeffs only, in [-pi/4, pi/4]. */ -0x1.555546p-3, 0x1.11076p-7, -0x1.994eb4p-13 }, .poly_cos = { /* Generated using Remez, even coeffs only, in [-pi/4, pi/4]. */ 0x1.55554ap-5, -0x1.6c0c1ap-10, 0x1.99e0eep-16 }, .pio2 = { 0x1.921fb6p+0f, -0x1.777a5cp-25f, -0x1.ee59dap-50f }, .inv_pio2 = 0x1.45f306p-1f, .shift = 0x1.8p23, .range_val = 0x1p20 }; static inline svbool_t check_ge_rangeval (svbool_t pg, svfloat32_t x, const struct sv_sincosf_data *d) { svbool_t in_bounds = svaclt (pg, x, d->range_val); return svnot_z (pg, in_bounds); } /* Single-precision vector function allowing calculation of both sin and cos in one function call, using shared argument reduction and separate low-order polynomials. Worst-case error for sin is 1.67 ULP: sv_sincosf_sin(0x1.c704c4p+19) got 0x1.fff698p-5 want 0x1.fff69cp-5 Worst-case error for cos is 1.81 ULP: sv_sincosf_cos(0x1.e506fp+19) got -0x1.ffec6ep-6 want -0x1.ffec72p-6. */ static inline svfloat32x2_t sv_sincosf_inline (svbool_t pg, svfloat32_t x, const struct sv_sincosf_data *d) { /* n = rint ( x / (pi/2) ). */ svfloat32_t q = svmla_x (pg, sv_f32 (d->shift), x, d->inv_pio2); q = svsub_x (pg, q, d->shift); svint32_t n = svcvt_s32_x (pg, q); /* Reduce x such that r is in [ -pi/4, pi/4 ]. */ svfloat32_t r = x; r = svmls_x (pg, r, q, d->pio2[0]); r = svmls_x (pg, r, q, d->pio2[1]); r = svmls_x (pg, r, q, d->pio2[2]); /* Approximate sin(r) ~= r + r^3 * poly_sin(r^2). */ svfloat32_t r2 = svmul_x (pg, r, r), r3 = svmul_x (pg, r, r2); svfloat32_t s = svmla_x (pg, sv_f32 (d->poly_sin[1]), r2, d->poly_sin[2]); s = svmad_x (pg, r2, s, d->poly_sin[0]); s = svmla_x (pg, r, r3, s); /* Approximate cos(r) ~= 1 - (r^2)/2 + r^4 * poly_cos(r^2). */ svfloat32_t r4 = svmul_x (pg, r2, r2); svfloat32_t p = svmla_x (pg, sv_f32 (d->poly_cos[1]), r2, d->poly_cos[2]); svfloat32_t c = svmad_x (pg, sv_f32 (d->poly_cos[0]), r2, -0.5); c = svmla_x (pg, c, r4, p); c = svmad_x (pg, r2, c, 1); svuint32_t un = svreinterpret_u32 (n); /* If odd quadrant, swap cos and sin. */ svbool_t swap = svcmpeq (pg, svlsl_x (pg, un, 31), 0); svfloat32_t ss = svsel (swap, s, c); svfloat32_t cc = svsel (swap, c, s); /* Fix signs according to quadrant. ss = asfloat(asuint(ss) ^ ((n & 2) << 30)) cc = asfloat(asuint(cc) & (((n + 1) & 2) << 30)). */ svuint32_t sin_sign = svlsl_x (pg, svand_x (pg, un, 2), 30); svuint32_t cos_sign = svlsl_x ( pg, svand_x (pg, svreinterpret_u32 (svadd_x (pg, n, 1)), 2), 30); ss = svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (ss), sin_sign)); cc = svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (cc), cos_sign)); return svcreate2 (ss, cc); }