/* * Helper for SVE routines which calculate log(1 + x) and do not * need special-case handling * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef MATH_SV_LOG1PF_INLINE_H #define MATH_SV_LOG1PF_INLINE_H #define SignExponentMask 0xff800000 static const struct sv_log1pf_data { float c0, c2, c4, c6; float c1, c3, c5, c7; float ln2, exp_bias, quarter; uint32_t four, three_quarters; } sv_log1pf_data = { /* Do not store first term of polynomial, which is -0.5, as this can be fmov-ed directly instead of including it in the main load-and-mla polynomial schedule. */ .c0 = 0x1.5555aap-2f, .c1 = -0x1.000038p-2f, .c2 = 0x1.99675cp-3f, .c3 = -0x1.54ef78p-3f, .c4 = 0x1.28a1f4p-3f, .c5 = -0x1.0da91p-3f, .c6 = 0x1.abcb6p-4f, .c7 = -0x1.6f0d5ep-5f, .ln2 = 0x1.62e43p-1f, .exp_bias = 0x1p-23f, .quarter = 0x1p-2f, .four = 0x40800000, .three_quarters = 0x3f400000, }; static inline svfloat32_t sv_log1pf_inline (svfloat32_t x, svbool_t pg) { const struct sv_log1pf_data *d = ptr_barrier (&sv_log1pf_data); /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m is in [-0.25, 0.5]): log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). We approximate log1p(m) with a polynomial, then scale by k*log(2). Instead of doing this directly, we use an intermediate scale factor s = 4*k*log(2) to ensure the scale is representable as a normalised fp32 number. */ svfloat32_t m = svadd_x (pg, x, 1); /* Choose k to scale x to the range [-1/4, 1/2]. */ svint32_t k = svand_x (pg, svsub_x (pg, svreinterpret_s32 (m), d->three_quarters), sv_s32 (SignExponentMask)); /* Scale x by exponent manipulation. */ svfloat32_t m_scale = svreinterpret_f32 ( svsub_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (k))); /* Scale up to ensure that the scale factor is representable as normalised fp32 number, and scale m down accordingly. */ svfloat32_t s = svreinterpret_f32 (svsubr_x (pg, k, d->four)); svfloat32_t fconst = svld1rq_f32 (svptrue_b32 (), &d->ln2); m_scale = svadd_x (pg, m_scale, svmla_lane_f32 (sv_f32 (-1), s, fconst, 2)); /* Evaluate polynomial on reduced interval. */ svfloat32_t ms2 = svmul_x (svptrue_b32 (), m_scale, m_scale); svfloat32_t c1357 = svld1rq_f32 (svptrue_b32 (), &d->c1); svfloat32_t p01 = svmla_lane_f32 (sv_f32 (d->c0), m_scale, c1357, 0); svfloat32_t p23 = svmla_lane_f32 (sv_f32 (d->c2), m_scale, c1357, 1); svfloat32_t p45 = svmla_lane_f32 (sv_f32 (d->c4), m_scale, c1357, 2); svfloat32_t p67 = svmla_lane_f32 (sv_f32 (d->c6), m_scale, c1357, 3); svfloat32_t p = svmla_x (pg, p45, p67, ms2); p = svmla_x (pg, p23, p, ms2); p = svmla_x (pg, p01, p, ms2); p = svmad_x (pg, m_scale, p, -0.5); p = svmla_x (pg, m_scale, m_scale, svmul_x (pg, m_scale, p)); /* The scale factor to be applied back at the end - by multiplying float(k) by 2^-23 we get the unbiased exponent of k. */ svfloat32_t scale_back = svmul_lane_f32 (svcvt_f32_x (pg, k), fconst, 1); return svmla_lane_f32 (p, scale_back, fconst, 0); } #endif // SV_LOG1PF_INLINE_H