/* * SVE helper for single-precision routines which calculate exp(x) and do * not need special-case handling * * Copyright (c) 2023-2025, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef MATH_SV_EXPF_INLINE_H #define MATH_SV_EXPF_INLINE_H #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" struct sv_expf_data { float c1, c3, inv_ln2; float ln2_lo, c0, c2, c4; float ln2_hi, shift; }; /* Coefficients copied from the polynomial in AdvSIMD variant, reversed for compatibility with polynomial helpers. Shift is 1.5*2^17 + 127. */ #define SV_EXPF_DATA \ { \ /* Coefficients copied from the polynomial in AdvSIMD variant. */ \ .c0 = 0x1.ffffecp-1f, .c1 = 0x1.fffdb6p-2f, .c2 = 0x1.555e66p-3f, \ .c3 = 0x1.573e2ep-5f, .c4 = 0x1.0e4020p-7f, .inv_ln2 = 0x1.715476p+0f, \ .ln2_hi = 0x1.62e4p-1f, .ln2_lo = 0x1.7f7d1cp-20f, \ .shift = 0x1.803f8p17f, \ } #define C(i) sv_f32 (d->poly[i]) static inline svfloat32_t expf_inline (svfloat32_t x, const svbool_t pg, const struct sv_expf_data *d) { /* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)] x = ln2*n + r, with r in [-ln2/2, ln2/2]. */ svfloat32_t lane_consts = svld1rq (svptrue_b32 (), &d->ln2_lo); /* n = round(x/(ln2/N)). */ svfloat32_t z = svmad_x (pg, sv_f32 (d->inv_ln2), x, d->shift); svfloat32_t n = svsub_x (pg, z, d->shift); /* r = x - n*ln2/N. */ svfloat32_t r = svmsb_x (pg, sv_f32 (d->ln2_hi), n, x); r = svmls_lane (r, n, lane_consts, 0); /* scale = 2^(n/N). */ svfloat32_t scale = svexpa (svreinterpret_u32 (z)); /* poly(r) = exp(r) - 1 ~= C0 r + C1 r^2 + C2 r^3 + C3 r^4 + C4 r^5. */ svfloat32_t p12 = svmla_lane (sv_f32 (d->c1), r, lane_consts, 2); svfloat32_t p34 = svmla_lane (sv_f32 (d->c3), r, lane_consts, 3); svfloat32_t r2 = svmul_x (svptrue_b32 (), r, r); svfloat32_t p14 = svmla_x (pg, p12, p34, r2); svfloat32_t p0 = svmul_lane (r, lane_consts, 1); svfloat32_t poly = svmla_x (pg, p0, r2, p14); return svmla_x (pg, scale, scale, poly); } #endif // MATH_SV_EXPF_INLINE_H