/* * Double-precision SVE 2^x function. * * Copyright (c) 2023-2025, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" #define N (1 << V_EXP_TABLE_BITS) #define BigBound 1022 #define UOFlowBound 1280 static const struct data { double c0, c2; double c1, c3; double shift, big_bound, uoflow_bound; } data = { /* Coefficients are computed using Remez algorithm with minimisation of the absolute error. */ .c0 = 0x1.62e42fefa3686p-1, .c1 = 0x1.ebfbdff82c241p-3, .c2 = 0x1.c6b09b16de99ap-5, .c3 = 0x1.3b2abf5571ad8p-7, .shift = 0x1.8p52 / N, .uoflow_bound = UOFlowBound, .big_bound = BigBound, }; #define SpecialOffset 0x6000000000000000 /* 0x1p513. */ /* SpecialBias1 + SpecialBias1 = asuint(1.0). */ #define SpecialBias1 0x7000000000000000 /* 0x1p769. */ #define SpecialBias2 0x3010000000000000 /* 0x1p-254. */ /* Update of both special and non-special cases, if any special case is detected. */ static inline svfloat64_t special_case (svbool_t pg, svfloat64_t s, svfloat64_t y, svfloat64_t n, const struct data *d) { /* s=2^n may overflow, break it up into s=s1*s2, such that exp = s + s*y can be computed as s1*(s2+s2*y) and s1*s1 overflows only if n>0. */ /* If n<=0 then set b to 0x6, 0 otherwise. */ svbool_t p_sign = svcmple (pg, n, 0.0); /* n <= 0. */ svuint64_t b = svdup_u64_z (p_sign, SpecialOffset); /* Set s1 to generate overflow depending on sign of exponent n. */ svfloat64_t s1 = svreinterpret_f64 (svsubr_x (pg, b, SpecialBias1)); /* Offset s to avoid overflow in final result if n is below threshold. */ svfloat64_t s2 = svreinterpret_f64 ( svadd_x (pg, svsub_x (pg, svreinterpret_u64 (s), SpecialBias2), b)); /* |n| > 1280 => 2^(n) overflows. */ svbool_t p_cmp = svacgt (pg, n, d->uoflow_bound); svfloat64_t r1 = svmul_x (svptrue_b64 (), s1, s1); svfloat64_t r2 = svmla_x (pg, s2, s2, y); svfloat64_t r0 = svmul_x (svptrue_b64 (), r2, s1); return svsel (p_cmp, r1, r0); } /* Fast vector implementation of exp2. Maximum measured error is 1.65 ulp. _ZGVsMxv_exp2(-0x1.4c264ab5b559bp-6) got 0x1.f8db0d4df721fp-1 want 0x1.f8db0d4df721dp-1. */ svfloat64_t SV_NAME_D1 (exp2) (svfloat64_t x, svbool_t pg) { const struct data *d = ptr_barrier (&data); svbool_t no_big_scale = svacle (pg, x, d->big_bound); svbool_t special = svnot_z (pg, no_big_scale); /* Reduce x to k/N + r, where k is integer and r in [-1/2N, 1/2N]. */ svfloat64_t shift = sv_f64 (d->shift); svfloat64_t kd = svadd_x (pg, x, shift); svuint64_t ki = svreinterpret_u64 (kd); /* kd = k/N. */ kd = svsub_x (pg, kd, shift); svfloat64_t r = svsub_x (pg, x, kd); /* scale ~= 2^(k/N). */ svuint64_t idx = svand_x (pg, ki, N - 1); svuint64_t sbits = svld1_gather_index (pg, __v_exp_data, idx); /* This is only a valid scale when -1023*N < k < 1024*N. */ svuint64_t top = svlsl_x (pg, ki, 52 - V_EXP_TABLE_BITS); svfloat64_t scale = svreinterpret_f64 (svadd_x (pg, sbits, top)); svfloat64_t c13 = svld1rq (svptrue_b64 (), &d->c1); /* Approximate exp2(r) using polynomial. */ /* y = exp2(r) - 1 ~= C0 r + C1 r^2 + C2 r^3 + C3 r^4. */ svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r); svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), r, c13, 0); svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), r, c13, 1); svfloat64_t p = svmla_x (pg, p01, p23, r2); svfloat64_t y = svmul_x (svptrue_b64 (), r, p); /* Assemble exp2(x) = exp2(r) * scale. */ if (unlikely (svptest_any (pg, special))) return special_case (pg, scale, y, kd, d); return svmla_x (pg, scale, scale, y); } TEST_SIG (SV, D, 1, exp2, -9.9, 9.9) TEST_ULP (SV_NAME_D1 (exp2), 1.15) TEST_DISABLE_FENV (SV_NAME_D1 (exp2)) TEST_SYM_INTERVAL (SV_NAME_D1 (exp2), 0, BigBound, 1000) TEST_SYM_INTERVAL (SV_NAME_D1 (exp2), BigBound, UOFlowBound, 100000) TEST_SYM_INTERVAL (SV_NAME_D1 (exp2), UOFlowBound, inf, 1000) CLOSE_SVE_ATTR