/* * Double-precision vector erf(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" static const struct data { double third; double tenth, two_over_five, two_over_fifteen; double two_over_nine, two_over_fortyfive; double max, shift; } data = { .third = 0x1.5555555555556p-2, /* used to compute 2/3 and 1/6 too. */ .two_over_fifteen = 0x1.1111111111111p-3, .tenth = -0x1.999999999999ap-4, .two_over_five = -0x1.999999999999ap-2, .two_over_nine = -0x1.c71c71c71c71cp-3, .two_over_fortyfive = 0x1.6c16c16c16c17p-5, .max = 5.9921875, /* 6 - 1/128. */ .shift = 0x1p45, }; #define SignMask (0x8000000000000000) /* Double-precision implementation of vector erf(x). Approximation based on series expansion near x rounded to nearest multiple of 1/128. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erf(x) ~ erf(r) + scale * d * [ + 1 - r d + 1/3 (2 r^2 - 1) d^2 - 1/6 (r (2 r^2 - 3)) d^3 + 1/30 (4 r^4 - 12 r^2 + 3) d^4 - 1/90 (4 r^4 - 20 r^2 + 15) d^5 ] Maximum measure error: 2.29 ULP _ZGVsMxv_erf(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8 want -0x1.20dd59132ebafp-8. */ svfloat64_t SV_NAME_D1 (erf) (svfloat64_t x, const svbool_t pg) { const struct data *dat = ptr_barrier (&data); /* |x| >= 6.0 - 1/128. Opposite conditions except none of them catch NaNs so they can be used in lookup and BSLs to yield the expected results. */ svbool_t a_ge_max = svacge (pg, x, dat->max); svbool_t a_lt_max = svaclt (pg, x, dat->max); /* Set r to multiple of 1/128 nearest to |x|. */ svfloat64_t a = svabs_x (pg, x); svfloat64_t shift = sv_f64 (dat->shift); svfloat64_t z = svadd_x (pg, a, shift); svuint64_t i = svand_x (pg, svreinterpret_u64 (z), 0xfff); i = svadd_x (pg, i, i); /* Lookup without shortcut for small values but with predicate to avoid segfault for large values and NaNs. */ svfloat64_t r = svsub_x (pg, z, shift); svfloat64_t erfr = svld1_gather_index (a_lt_max, &__v_erf_data.tab[0].erf, i); svfloat64_t scale = svld1_gather_index (a_lt_max, &__v_erf_data.tab[0].scale, i); /* erf(x) ~ erf(r) + scale * d * poly (r, d). */ svfloat64_t d = svsub_x (pg, a, r); svfloat64_t d2 = svmul_x (pg, d, d); svfloat64_t r2 = svmul_x (pg, r, r); /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5. */ svfloat64_t p1 = r; svfloat64_t third = sv_f64 (dat->third); svfloat64_t twothird = svmul_x (pg, third, 2.0); svfloat64_t sixth = svmul_x (pg, third, 0.5); svfloat64_t p2 = svmls_x (pg, third, r2, twothird); svfloat64_t p3 = svmad_x (pg, r2, third, -0.5); p3 = svmul_x (pg, r, p3); svfloat64_t p4 = svmla_x (pg, sv_f64 (dat->two_over_five), r2, dat->two_over_fifteen); p4 = svmls_x (pg, sv_f64 (dat->tenth), r2, p4); svfloat64_t p5 = svmla_x (pg, sv_f64 (dat->two_over_nine), r2, dat->two_over_fortyfive); p5 = svmla_x (pg, sixth, r2, p5); p5 = svmul_x (pg, r, p5); svfloat64_t p34 = svmla_x (pg, p3, d, p4); svfloat64_t p12 = svmla_x (pg, p1, d, p2); svfloat64_t y = svmla_x (pg, p34, d2, p5); y = svmla_x (pg, p12, d2, y); y = svmla_x (pg, erfr, scale, svmls_x (pg, d, d2, y)); /* Solves the |x| = inf and NaN cases. */ y = svsel (a_ge_max, sv_f64 (1.0), y); /* Copy sign. */ svuint64_t ix = svreinterpret_u64 (x); svuint64_t iy = svreinterpret_u64 (y); svuint64_t sign = svand_x (pg, ix, SignMask); return svreinterpret_f64 (svorr_x (pg, sign, iy)); } TEST_SIG (SV, D, 1, erf, -6.0, 6.0) TEST_ULP (SV_NAME_D1 (erf), 1.79) TEST_DISABLE_FENV (SV_NAME_D1 (erf)) TEST_SYM_INTERVAL (SV_NAME_D1 (erf), 0, 5.9921875, 40000) TEST_SYM_INTERVAL (SV_NAME_D1 (erf), 5.9921875, inf, 40000) TEST_SYM_INTERVAL (SV_NAME_D1 (erf), 0, inf, 4000) CLOSE_SVE_ATTR