/* * Single-precision SVE cbrt(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" #include "sv_poly_f32.h" const static struct data { float32_t poly[4]; float32_t table[5]; float32_t one_third, two_thirds; } data = { /* Very rough approximation of cbrt(x) in [0.5, 1], generated with FPMinimax. */ .poly = { 0x1.c14e96p-2, 0x1.dd2d3p-1, -0x1.08e81ap-1, 0x1.2c74c2p-3, }, /* table[i] = 2^((i - 2) / 3). */ .table = { 0x1.428a3p-1, 0x1.965feap-1, 0x1p0, 0x1.428a3p0, 0x1.965feap0 }, .one_third = 0x1.555556p-2f, .two_thirds = 0x1.555556p-1f, }; #define SmallestNormal 0x00800000 #define Thresh 0x7f000000 /* asuint(INFINITY) - SmallestNormal. */ #define MantissaMask 0x007fffff #define HalfExp 0x3f000000 static svfloat32_t NOINLINE special_case (svfloat32_t x, svfloat32_t y, svbool_t special) { return sv_call_f32 (cbrtf, x, y, special); } static inline svfloat32_t shifted_lookup (const svbool_t pg, const float32_t *table, svint32_t i) { return svld1_gather_index (pg, table, svadd_x (pg, i, 2)); } /* Approximation for vector single-precision cbrt(x) using Newton iteration with initial guess obtained by a low-order polynomial. Greatest error is 1.64 ULP. This is observed for every value where the mantissa is 0x1.85a2aa and the exponent is a multiple of 3, for example: _ZGVsMxv_cbrtf (0x1.85a2aap+3) got 0x1.267936p+1 want 0x1.267932p+1. */ svfloat32_t SV_NAME_F1 (cbrt) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svfloat32_t ax = svabs_x (pg, x); svuint32_t iax = svreinterpret_u32 (ax); svuint32_t sign = sveor_x (pg, svreinterpret_u32 (x), iax); /* Subnormal, +/-0 and special values. */ svbool_t special = svcmpge (pg, svsub_x (pg, iax, SmallestNormal), Thresh); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexpf, which gets subnormal values wrong - these have to be special-cased as a result. */ svfloat32_t m = svreinterpret_f32 (svorr_x ( pg, svand_x (pg, svreinterpret_u32 (x), MantissaMask), HalfExp)); svint32_t e = svsub_x (pg, svreinterpret_s32 (svlsr_x (pg, iax, 23)), 126); /* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is, the less accurate the next stage of the algorithm needs to be. An order-4 polynomial is enough for one Newton iteration. */ svfloat32_t p = sv_pairwise_poly_3_f32_x (pg, m, svmul_x (pg, m, m), d->poly); /* One iteration of Newton's method for iteratively approximating cbrt. */ svfloat32_t m_by_3 = svmul_x (pg, m, d->one_third); svfloat32_t a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, p, p)), p, d->two_thirds); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ svfloat32_t ef = svmul_x (pg, svcvt_f32_x (pg, e), d->one_third); svint32_t ey = svcvt_s32_x (pg, ef); svint32_t em3 = svmls_x (pg, e, ey, 3); svfloat32_t my = shifted_lookup (pg, d->table, em3); my = svmul_x (pg, my, a); /* Vector version of ldexpf. */ svfloat32_t y = svscale_x (pg, my, ey); if (unlikely (svptest_any (pg, special))) return special_case ( x, svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (y), sign)), special); /* Copy sign. */ return svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (y), sign)); } TEST_SIG (SV, F, 1, cbrt, -10.0, 10.0) TEST_ULP (SV_NAME_F1 (cbrt), 1.15) TEST_DISABLE_FENV (SV_NAME_F1 (cbrt)) TEST_SYM_INTERVAL (SV_NAME_F1 (cbrt), 0, inf, 1000000) CLOSE_SVE_ATTR