/* * Double-precision SVE atanh(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" #define WANT_SV_LOG1P_K0_SHORTCUT 0 #include "sv_log1p_inline.h" #define One (0x3ff0000000000000) #define Half (0x3fe0000000000000) static svfloat64_t NOINLINE special_case (svfloat64_t x, svfloat64_t y, svbool_t special) { return sv_call_f64 (atanh, x, y, special); } /* SVE approximation for double-precision atanh, based on log1p. The greatest observed error is 2.81 ULP: _ZGVsMxv_atanh(0x1.ffae6288b601p-6) got 0x1.ffd8ff31b5019p-6 want 0x1.ffd8ff31b501cp-6. */ svfloat64_t SV_NAME_D1 (atanh) (svfloat64_t x, const svbool_t pg) { svfloat64_t ax = svabs_x (pg, x); svuint64_t iax = svreinterpret_u64 (ax); svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), iax); svfloat64_t halfsign = svreinterpret_f64 (svorr_x (pg, sign, Half)); /* It is special if iax >= 1. */ svbool_t special = svacge (pg, x, 1.0); /* Computation is performed based on the following sequence of equality: (1+x)/(1-x) = 1 + 2x/(1-x). */ svfloat64_t y; y = svadd_x (pg, ax, ax); y = svdiv_x (pg, y, svsub_x (pg, sv_f64 (1), ax)); /* ln((1+x)/(1-x)) = ln(1+2x/(1-x)) = ln(1 + y). */ y = sv_log1p_inline (y, pg); if (unlikely (svptest_any (pg, special))) return special_case (x, svmul_x (pg, halfsign, y), special); return svmul_x (pg, halfsign, y); } TEST_SIG (SV, D, 1, atanh, -1.0, 1.0) TEST_ULP (SV_NAME_D1 (atanh), 3.32) TEST_DISABLE_FENV (SV_NAME_D1 (atanh)) TEST_SYM_INTERVAL (SV_NAME_D1 (atanh), 0, 0x1p-23, 10000) TEST_SYM_INTERVAL (SV_NAME_D1 (atanh), 0x1p-23, 1, 90000) TEST_SYM_INTERVAL (SV_NAME_D1 (atanh), 1, inf, 100) /* atanh is asymptotic at 1, which is the default control value - have to set -c 0 specially to ensure fp exceptions are triggered correctly (choice of control lane is irrelevant if fp exceptions are disabled). */ TEST_CONTROL_VALUE (SV_NAME_D1 (atanh), 0) CLOSE_SVE_ATTR