/* * Double-precision erf(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #define TwoOverSqrtPiMinusOne 0x1.06eba8214db69p-3 #define Shift 0x1p45 /* Polynomial coefficients. */ #define OneThird 0x1.5555555555555p-2 #define TwoThird 0x1.5555555555555p-1 #define TwoOverFifteen 0x1.1111111111111p-3 #define TwoOverFive 0x1.999999999999ap-2 #define Tenth 0x1.999999999999ap-4 #define TwoOverNine 0x1.c71c71c71c71cp-3 #define TwoOverFortyFive 0x1.6c16c16c16c17p-5 #define Sixth 0x1.555555555555p-3 /* Fast erf approximation based on series expansion near x rounded to nearest multiple of 1/128. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erf(x) ~ erf(r) + scale * d * [ + 1 - r d + 1/3 (2 r^2 - 1) d^2 - 1/6 (r (2 r^2 - 3)) d^3 + 1/30 (4 r^4 - 12 r^2 + 3) d^4 - 1/90 (4 r^4 - 20 r^2 + 15) d^5 ] Maximum measure error: 2.29 ULP erf(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8 want -0x1.20dd59132ebafp-8. */ double arm_math_erf (double x) { /* Get absolute value and sign. */ uint64_t ix = asuint64 (x); uint64_t ia = ix & 0x7fffffffffffffff; uint64_t sign = ix & ~0x7fffffffffffffff; /* |x| < 0x1p-508. Triggers exceptions. */ if (unlikely (ia < 0x2030000000000000)) return fma (TwoOverSqrtPiMinusOne, x, x); if (ia < 0x4017f80000000000) /* |x| < 6 - 1 / 128 = 5.9921875. */ { /* Set r to multiple of 1/128 nearest to |x|. */ double a = asdouble (ia); double z = a + Shift; uint64_t i = asuint64 (z) - asuint64 (Shift); double r = z - Shift; /* Lookup erf(r) and scale(r) in table. Set erf(r) to 0 and scale to 2/sqrt(pi) for |x| <= 0x1.cp-9. */ double erfr = __v_erf_data.tab[i].erf; double scale = __v_erf_data.tab[i].scale; /* erf(x) ~ erf(r) + scale * d * poly (d, r). */ double d = a - r; double r2 = r * r; double d2 = d * d; /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5. */ double p1 = -r; double p2 = fma (TwoThird, r2, -OneThird); double p3 = -r * fma (OneThird, r2, -0.5); double p4 = fma (fma (TwoOverFifteen, r2, -TwoOverFive), r2, Tenth); double p5 = -r * fma (fma (TwoOverFortyFive, r2, -TwoOverNine), r2, Sixth); double p34 = fma (p4, d, p3); double p12 = fma (p2, d, p1); double y = fma (p5, d2, p34); y = fma (y, d2, p12); y = fma (fma (y, d2, d), scale, erfr); return asdouble (asuint64 (y) | sign); } /* Special cases : erf(nan)=nan, erf(+inf)=+1 and erf(-inf)=-1. */ if (unlikely (ia >= 0x7ff0000000000000)) return (1.0 - (double) (sign >> 62)) + 1.0 / x; /* Boring domain (|x| >= 6.0). */ return asdouble (sign | asuint64 (1.0)); } TEST_ULP (arm_math_erf, 1.79) TEST_SYM_INTERVAL (arm_math_erf, 0, 5.9921875, 40000) TEST_SYM_INTERVAL (arm_math_erf, 5.9921875, inf, 40000) TEST_SYM_INTERVAL (arm_math_erf, 0, inf, 40000)