/* * Single-precision asinh(x) function. * * Copyright (c) 2022-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "poly_scalar_f32.h" #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #define AbsMask (0x7fffffff) #define SqrtFltMax (0x1.749e96p+10f) #define Ln2 (0x1.62e4p-1f) #define One (0x3f8) #define ExpM12 (0x398) /* asinhf approximation using a variety of approaches on different intervals: |x| < 2^-12: Return x. Function is exactly rounded in this region. |x| < 1.0: Use custom order-8 polynomial. The largest observed error in this region is 1.3ulps: asinhf(0x1.f0f74cp-1) got 0x1.b88de4p-1 want 0x1.b88de2p-1. |x| <= SqrtFltMax: Calculate the result directly using the definition of asinh(x) = ln(x + sqrt(x*x + 1)). The largest observed error in this region is 1.99ulps. asinhf(0x1.00e358p+0) got 0x1.c4849ep-1 want 0x1.c484a2p-1. |x| > SqrtFltMax: We cannot square x without overflow at a low cost. At very large x, asinh(x) ~= ln(2x). At huge x we cannot even double x without overflow, so calculate this as ln(x) + ln(2). This largest observed error in this region is 3.39ulps. asinhf(0x1.749e9ep+10) got 0x1.fffff8p+2 want 0x1.fffffep+2. */ float asinhf (float x) { uint32_t ix = asuint (x); uint32_t ia = ix & AbsMask; uint32_t ia12 = ia >> 20; float ax = asfloat (ia); uint32_t sign = ix & ~AbsMask; if (unlikely (ia12 < ExpM12 || ia == 0x7f800000)) return x; if (unlikely (ia12 >= 0x7f8)) return __math_invalidf (x); if (ia12 < One) { float x2 = ax * ax; float p = estrin_7_f32 (ax, x2, x2 * x2, __asinhf_data.coeffs); float y = fmaf (x2, p, ax); return asfloat (asuint (y) | sign); } if (unlikely (ax > SqrtFltMax)) { return asfloat (asuint (logf (ax) + Ln2) | sign); } return asfloat (asuint (logf (ax + sqrtf (ax * ax + 1))) | sign); } TEST_SIG (S, F, 1, asinh, -10.0, 10.0) TEST_ULP (asinhf, 2.9) TEST_INTERVAL (asinhf, 0, 0x1p-12, 5000) TEST_INTERVAL (asinhf, 0x1p-12, 1.0, 50000) TEST_INTERVAL (asinhf, 1.0, 0x1p11, 50000) TEST_INTERVAL (asinhf, 0x1p11, 0x1p127, 20000)