/* * Single-precision acosh(x) function. * * Copyright (c) 2022-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #define Ln2 (0x1.62e4p-1f) #define MinusZero 0x80000000 #define SquareLim 0x5f800000 /* asuint(0x1p64). */ #define Two 0x40000000 /* acoshf approximation using a variety of approaches on different intervals: x >= 2^64: We cannot square x without overflow. For huge x, sqrt(x*x - 1) is close enough to x that we can calculate the result by ln(2x) == ln(x) + ln(2). The greatest error in the region is 0.94 ULP: acoshf(0x1.15f706p+92) got 0x1.022e14p+6 want 0x1.022e16p+6. x > 2: Calculate the result directly using definition of asinh(x) = ln(x + sqrt(x*x - 1)). Greatest error in this region is 1.30 ULP: acoshf(0x1.249d8p+1) got 0x1.77e1aep+0 want 0x1.77e1bp+0. 0 <= x <= 2: Calculate the result using log1p. For x < 1, acosh(x) is undefined. For 1 <= x <= 2, the greatest error is 2.78 ULP: acoshf(0x1.07887p+0) got 0x1.ef9e9cp-3 want 0x1.ef9ea2p-3. */ float acoshf (float x) { uint32_t ix = asuint (x); if (unlikely (ix >= MinusZero)) return __math_invalidf (x); if (unlikely (ix >= SquareLim)) return logf (x) + Ln2; if (ix > Two) return logf (x + sqrtf (x * x - 1)); float xm1 = x - 1; return log1pf (xm1 + sqrtf (2 * xm1 + xm1 * xm1)); } TEST_SIG (S, F, 1, acosh, 1.0, 10.0) TEST_ULP (acoshf, 2.30) TEST_INTERVAL (acoshf, 0, 1, 100) TEST_INTERVAL (acoshf, 1, 2, 10000) TEST_INTERVAL (acoshf, 2, 0x1p64, 100000) TEST_INTERVAL (acoshf, 0x1p64, inf, 100000) TEST_INTERVAL (acoshf, -0, -inf, 10000)