/* * Double-precision acosh(x) function. * * Copyright (c) 2022-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #define Ln2 (0x1.62e42fefa39efp-1) #define MinusZero (0x8000000000000000) #define SquareLim (0x5fe0000000000000) /* asuint64(0x1.0p511). */ #define Two (0x4000000000000000) /* asuint64(2.0). */ /* acosh approximation using a variety of approaches on different intervals: acosh(x) = ln(x + sqrt(x * x - 1)). x >= 2^511: We cannot square x without overflow. For huge x, sqrt(x*x - 1) is close enough to x that we can calculate the result by ln(2x) == ln(x) + ln(2). The greatest observed error in this region is 0.98 ULP: acosh(0x1.1b9bf42923d1dp+853) got 0x1.28066a11a7c7fp+9 want 0x1.28066a11a7c8p+9. x > 2: Calculate the result directly using definition of acosh(x). Greatest observed error in this region is 1.33 ULP: acosh(0x1.1e45d14bfcfa2p+1) got 0x1.71a06f50c34b5p+0 want 0x1.71a06f50c34b6p+0. 0 <= x <= 2: Calculate the result using log1p. For x < 1, acosh(x) is undefined. For 1 <= x <= 2, the largest observed error is 2.69 ULP: acosh(0x1.073528248093p+0) got 0x1.e4d9bd20684f3p-3 want 0x1.e4d9bd20684f6p-3. */ double acosh (double x) { uint64_t ix = asuint64 (x); if (unlikely (ix >= MinusZero)) return __math_invalid (x); if (unlikely (ix >= SquareLim)) return log (x) + Ln2; if (ix >= Two) return log (x + sqrt (x * x - 1)); double xm1 = x - 1; return log1p (xm1 + sqrt (2 * xm1 + xm1 * xm1)); } TEST_SIG (S, D, 1, acosh, 1.0, 10.0) TEST_ULP (acosh, 2.19) TEST_INTERVAL (acosh, 0, 1, 10000) TEST_INTERVAL (acosh, 1, 2, 100000) TEST_INTERVAL (acosh, 2, 0x1p511, 100000) TEST_INTERVAL (acosh, 0x1p511, inf, 100000) TEST_INTERVAL (acosh, -0, -inf, 10000)