/* * Single-precision acos(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "poly_scalar_f32.h" #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #define AbsMask 0x7fffffff #define Half 0x3f000000 #define One 0x3f800000 #define PiOver2f 0x1.921fb6p+0f #define Pif 0x1.921fb6p+1f #define Small 0x32800000 /* 2^-26. */ #define Small12 0x328 #define QNaN 0x7fc /* Fast implementation of single-precision acos(x) based on polynomial approximation of single-precision asin(x). For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-26 for correct rounding. For |x| in [Small, 0.5], use the trigonometric identity acos(x) = pi/2 - asin(x) and use an order 4 polynomial P such that the final approximation of asin is an odd polynomial: asin(x) ~ x + x^3 * P(x^2). The largest observed error in this region is 1.16 ulps, acosf(0x1.ffbeccp-2) got 0x1.0c27f8p+0 want 0x1.0c27f6p+0. For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1 acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z)) where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the approximation of asin near 0. The largest observed error in this region is 1.32 ulps, acosf(0x1.15ba56p-1) got 0x1.feb33p-1 want 0x1.feb32ep-1. For x in [-1.0, -0.5], use this other identity to deduce the negative inputs from their absolute value. acos(x) = pi - acos(-x) The largest observed error in this region is 1.28 ulps, acosf(-0x1.002072p-1) got 0x1.0c1e84p+1 want 0x1.0c1e82p+1. */ float acosf (float x) { uint32_t ix = asuint (x); uint32_t ia = ix & AbsMask; uint32_t ia12 = ia >> 20; float ax = asfloat (ia); uint32_t sign = ix & ~AbsMask; /* Special values and invalid range. */ if (unlikely (ia12 == QNaN)) return x; if (ia > One) return __math_invalidf (x); if (ia12 < Small12) return PiOver2f - x; /* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with z2 = x ^ 2 and z = |x| , if |x| < 0.5 z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */ float z2 = ax < 0.5 ? x * x : fmaf (-0.5f, ax, 0.5f); float z = ax < 0.5 ? ax : sqrtf (z2); /* Use a single polynomial approximation P for both intervals. */ float p = horner_4_f32 (z2, __asinf_poly); /* Finalize polynomial: z + z * z2 * P(z2). */ p = fmaf (z * z2, p, z); /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5 = pi - 2 Q(|x|), for -1.0 < x <= -0.5 = 2 Q(|x|) , for -0.5 < x < 0.0. */ if (ax < 0.5) return PiOver2f - asfloat (asuint (p) | sign); return (x <= -0.5) ? fmaf (-2.0f, p, Pif) : 2.0f * p; } TEST_SIG (S, F, 1, acos, -1.0, 1.0) TEST_ULP (acosf, 0.82) TEST_INTERVAL (acosf, 0, Small, 5000) TEST_INTERVAL (acosf, Small, 0.5, 50000) TEST_INTERVAL (acosf, 0.5, 1.0, 50000) TEST_INTERVAL (acosf, 1.0, 0x1p11, 50000) TEST_INTERVAL (acosf, 0x1p11, inf, 20000) TEST_INTERVAL (acosf, -0, -inf, 20000)