/* * Double-precision scalar cospi function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "math_config.h" #include "test_sig.h" #include "test_defs.h" #include "poly_scalar_f64.h" /* Taylor series coefficents for sin(pi * x). C2 coefficient (orginally ~=5.16771278) has been split into two parts: C2_hi = 4, C2_lo = C2 - C2_hi (~=1.16771278) This change in magnitude reduces floating point rounding errors. C2_hi is then reintroduced after the polynomial approxmation. */ static const double poly[] = { 0x1.921fb54442d184p1, -0x1.2aef39896f94bp0, 0x1.466bc6775ab16p1, -0x1.32d2cce62dc33p-1, 0x1.507834891188ep-4, -0x1.e30750a28c88ep-8, 0x1.e8f48308acda4p-12, -0x1.6fc0032b3c29fp-16, 0x1.af86ae521260bp-21, -0x1.012a9870eeb7dp-25 }; #define Shift 0x1.8p+52 /* Approximation for scalar double-precision cospi(x). Maximum error: 3.13 ULP: cospi(0x1.160b129300112p-21) got 0x1.fffffffffd16bp-1 want 0x1.fffffffffd16ep-1. */ double arm_math_cospi (double x) { if (isinf (x) || isnan (x)) return __math_invalid (x); double ax = asdouble (asuint64 (x) & ~0x8000000000000000); /* Edge cases for when cospif should be exactly 1. (Integers) 0x1p53 is the limit for single precision to store any decimal places. */ if (ax >= 0x1p53) return 1; /* If x is an integer, return +- 1, based upon if x is odd. */ uint64_t m = (uint64_t) ax; if (m == ax) return (m & 1) ? -1 : 1; /* For very small inputs, squaring r causes underflow. Values below this threshold can be approximated via cospi(x) ~= 1. */ if (ax < 0x1p-63) return 1; /* Any non-integer values >= 0x1x51 will be int +0.5. These values should return exactly 0. */ if (ax >= 0x1p51) return 0; /* n = rint(|x|). */ double n = ax + Shift; uint64_t sign = asuint64 (n) << 63; n = n - Shift; /* We know that cospi(x) = sinpi(0.5 - x) range reduction and offset into sinpi range -1/2 .. 1/2 r = 0.5 - |x - rint(x)|. */ double r = 0.5 - fabs (ax - n); /* y = sin(r). */ double r2 = r * r; double y = horner_9_f64 (r2, poly); y = y * r; /* Reintroduce C2_hi. */ y = fma (-4 * r2, r, y); /* As all values are reduced to -1/2 .. 1/2, the result of cos(x) always be positive, therefore, the sign must be introduced based upon if x rounds to odd or even. */ return asdouble (asuint64 (y) ^ sign); } #if WANT_EXPERIMENTAL_MATH double cospi (double x) { return arm_math_cospi (x); } #endif #if WANT_TRIGPI_TESTS TEST_ULP (arm_math_cospi, 2.63) TEST_SYM_INTERVAL (arm_math_cospi, 0, 0x1p-63, 5000) TEST_SYM_INTERVAL (arm_math_cospi, 0x1p-63, 0.5, 10000) TEST_SYM_INTERVAL (arm_math_cospi, 0.5, 0x1p51f, 10000) TEST_SYM_INTERVAL (arm_math_cospi, 0x1p51f, inf, 10000) #endif