/* * Helper for single-precision routines which calculate exp(x) - 1 and do not * need special-case handling * * Copyright (c) 2022-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef MATH_V_EXPM1F_INLINE_H #define MATH_V_EXPM1F_INLINE_H #include "v_math.h" struct v_expm1f_data { float32x4_t c0, c2; int32x4_t exponent_bias; float c1, c3, inv_ln2, c4; float ln2_hi, ln2_lo; }; /* Coefficients generated using fpminimax with degree=5 in [-log(2)/2, log(2)/2]. Exponent bias is asuint(1.0f). */ #define V_EXPM1F_DATA \ { \ .c0 = V4 (0x1.fffffep-2), .c1 = 0x1.5554aep-3, .c2 = V4 (0x1.555736p-5), \ .c3 = 0x1.12287cp-7, .c4 = 0x1.6b55a2p-10, \ .exponent_bias = V4 (0x3f800000), .inv_ln2 = 0x1.715476p+0f, \ .ln2_hi = 0x1.62e4p-1f, .ln2_lo = 0x1.7f7d1cp-20f, \ } static inline float32x4_t expm1f_inline (float32x4_t x, const struct v_expm1f_data *d) { /* Helper routine for calculating exp(x) - 1. */ float32x2_t ln2 = vld1_f32 (&d->ln2_hi); float32x4_t lane_consts = vld1q_f32 (&d->c1); /* Reduce argument: f in [-ln2/2, ln2/2], i is exact. */ float32x4_t j = vrndaq_f32 (vmulq_laneq_f32 (x, lane_consts, 2)); int32x4_t i = vcvtq_s32_f32 (j); float32x4_t f = vfmsq_lane_f32 (x, j, ln2, 0); f = vfmsq_lane_f32 (f, j, ln2, 1); /* Approximate expm1(f) with polynomial P, expm1(f) ~= f + f^2 * P(f). */ float32x4_t f2 = vmulq_f32 (f, f); float32x4_t f4 = vmulq_f32 (f2, f2); float32x4_t p01 = vfmaq_laneq_f32 (d->c0, f, lane_consts, 0); float32x4_t p23 = vfmaq_laneq_f32 (d->c2, f, lane_consts, 1); float32x4_t p = vfmaq_f32 (p01, f2, p23); p = vfmaq_laneq_f32 (p, f4, lane_consts, 3); p = vfmaq_f32 (f, f2, p); /* t = 2^i. */ int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias); float32x4_t t = vreinterpretq_f32_s32 (u); /* expm1(x) ~= p * t + (t - 1). */ return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t); } #endif // MATH_V_EXPM1F_INLINE_H