/* * Double-precision vector cbrt(x) function. * * Copyright (c) 2022-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "test_sig.h" #include "test_defs.h" #include "v_poly_f64.h" const static struct data { float64x2_t poly[4], one_third, shift; int64x2_t exp_bias; uint64x2_t abs_mask, tiny_bound; uint32x4_t thresh; double table[5]; } data = { .shift = V2 (0x1.8p52), .poly = { /* Generated with fpminimax in [0.5, 1]. */ V2 (0x1.c14e8ee44767p-2), V2 (0x1.dd2d3f99e4c0ep-1), V2 (-0x1.08e83026b7e74p-1), V2 (0x1.2c74eaa3ba428p-3) }, .exp_bias = V2 (1022), .abs_mask = V2(0x7fffffffffffffff), .tiny_bound = V2(0x0010000000000000), /* Smallest normal. */ .thresh = V4(0x7fe00000), /* asuint64 (infinity) - tiny_bound. */ .one_third = V2(0x1.5555555555555p-2), .table = { /* table[i] = 2^((i - 2) / 3). */ 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0, 0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0 } }; #define MantissaMask v_u64 (0x000fffffffffffff) static float64x2_t NOINLINE VPCS_ATTR special_case (float64x2_t x, float64x2_t y, uint32x2_t special) { return v_call_f64 (cbrt, x, y, vmovl_u32 (special)); } /* Approximation for double-precision vector cbrt(x), using low-order polynomial and two Newton iterations. The vector version of frexp does not handle subnormals correctly. As a result these need to be handled by the scalar fallback, where accuracy may be worse than that of the vector code path. Greatest observed error in the normal range is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. _ZGVnN2v_cbrt (0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0 want 0x1.965fe72821e99p+0. */ VPCS_ATTR float64x2_t V_NAME_D1 (cbrt) (float64x2_t x) { const struct data *d = ptr_barrier (&data); uint64x2_t iax = vreinterpretq_u64_f64 (vabsq_f64 (x)); /* Subnormal, +/-0 and special values. */ uint32x2_t special = vcge_u32 (vsubhn_u64 (iax, d->tiny_bound), vget_low_u32 (d->thresh)); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexp, which gets subnormal values wrong - these have to be special-cased as a result. */ float64x2_t m = vbslq_f64 (MantissaMask, x, v_f64 (0.5)); int64x2_t exp_bias = d->exp_bias; uint64x2_t ia12 = vshrq_n_u64 (iax, 52); int64x2_t e = vsubq_s64 (vreinterpretq_s64_u64 (ia12), exp_bias); /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ float64x2_t p = v_pairwise_poly_3_f64 (m, vmulq_f64 (m, m), d->poly); float64x2_t one_third = d->one_third; /* Two iterations of Newton's method for iteratively approximating cbrt. */ float64x2_t m_by_3 = vmulq_f64 (m, one_third); float64x2_t two_thirds = vaddq_f64 (one_third, one_third); float64x2_t a = vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (p, p)), two_thirds, p); a = vfmaq_f64 (vdivq_f64 (m_by_3, vmulq_f64 (a, a)), two_thirds, a); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ float64x2_t ef = vcvtq_f64_s64 (e); float64x2_t eb3f = vrndnq_f64 (vmulq_f64 (ef, one_third)); int64x2_t em3 = vcvtq_s64_f64 (vfmsq_f64 (ef, eb3f, v_f64 (3))); int64x2_t ey = vcvtq_s64_f64 (eb3f); float64x2_t my = (float64x2_t){ d->table[em3[0] + 2], d->table[em3[1] + 2] }; my = vmulq_f64 (my, a); /* Vector version of ldexp. */ float64x2_t y = vreinterpretq_f64_s64 ( vshlq_n_s64 (vaddq_s64 (ey, vaddq_s64 (exp_bias, v_s64 (1))), 52)); y = vmulq_f64 (y, my); if (unlikely (v_any_u32h (special))) return special_case (x, vbslq_f64 (d->abs_mask, y, x), special); /* Copy sign. */ return vbslq_f64 (d->abs_mask, y, x); } /* Worse-case ULP error assumes that scalar fallback is GLIBC 2.40 cbrt, which has ULP error of 3.67 at 0x1.7a337e1ba1ec2p-257 [1]. Largest observed error in the vector path is 1.79 ULP. [1] Innocente, V., & Zimmermann, P. (2024). Accuracy of Mathematical Functions in Single, Double, Double Extended, and Quadruple Precision. */ TEST_ULP (V_NAME_D1 (cbrt), 3.17) TEST_SIG (V, D, 1, cbrt, -10.0, 10.0) TEST_SYM_INTERVAL (V_NAME_D1 (cbrt), 0, inf, 1000000)