/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Create and parse buffers containing CTF data. */ #include #include #include #include #include #include #include #include "ctf_headers.h" #include "ctftools.h" #include "strtab.h" #include "memory.h" /* * Name of the file currently being read, used to print error messages. We * assume that only one file will be read at a time, and thus make no attempt * to allow curfile to be used simultaneously by multiple threads. * * The value is only valid during a call to ctf_load. */ static char *curfile; #define CTF_BUF_CHUNK_SIZE (64 * 1024) #define RES_BUF_CHUNK_SIZE (64 * 1024) struct ctf_buf { strtab_t ctb_strtab; /* string table */ caddr_t ctb_base; /* pointer to base of buffer */ caddr_t ctb_end; /* pointer to end of buffer */ caddr_t ctb_ptr; /* pointer to empty buffer space */ size_t ctb_size; /* size of buffer */ uint_t nptent; /* number of processed types */ }; /* * Macros to reverse byte order */ #define BSWAP_8(x) ((x) & 0xff) #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) #define SWAP_16(x) (x) = BSWAP_16(x) #define SWAP_32(x) (x) = BSWAP_32(x) static int target_requires_swap; /*PRINTFLIKE1*/ static void parseterminate(const char *fmt, ...) { static char msgbuf[1024]; /* sigh */ va_list ap; va_start(ap, fmt); vsnprintf(msgbuf, sizeof (msgbuf), fmt, ap); va_end(ap); terminate("%s: %s\n", curfile, msgbuf); } static void ctf_buf_grow(ctf_buf_t *b) { off_t ptroff = b->ctb_ptr - b->ctb_base; b->ctb_size += CTF_BUF_CHUNK_SIZE; b->ctb_base = xrealloc(b->ctb_base, b->ctb_size); b->ctb_end = b->ctb_base + b->ctb_size; b->ctb_ptr = b->ctb_base + ptroff; } static ctf_buf_t * ctf_buf_new(void) { ctf_buf_t *b = xcalloc(sizeof (ctf_buf_t)); strtab_create(&b->ctb_strtab); ctf_buf_grow(b); return (b); } static void ctf_buf_free(ctf_buf_t *b) { strtab_destroy(&b->ctb_strtab); free(b->ctb_base); free(b); } static uint_t ctf_buf_cur(ctf_buf_t *b) { return (b->ctb_ptr - b->ctb_base); } static void ctf_buf_write(ctf_buf_t *b, void const *p, size_t n) { size_t len; while (n != 0) { if (b->ctb_ptr == b->ctb_end) ctf_buf_grow(b); len = MIN((size_t)(b->ctb_end - b->ctb_ptr), n); bcopy(p, b->ctb_ptr, len); b->ctb_ptr += len; p = (char const *)p + len; n -= len; } } static int write_label(void *arg1, void *arg2) { labelent_t *le = arg1; ctf_buf_t *b = arg2; ctf_lblent_t ctl; ctl.ctl_label = strtab_insert(&b->ctb_strtab, le->le_name); ctl.ctl_typeidx = le->le_idx; if (target_requires_swap) { SWAP_32(ctl.ctl_label); SWAP_32(ctl.ctl_typeidx); } ctf_buf_write(b, &ctl, sizeof (ctl)); return (1); } static void write_objects(iidesc_t *idp, ctf_buf_t *b) { uint_t id = (idp ? idp->ii_dtype->t_id : 0); if (target_requires_swap) { SWAP_32(id); } ctf_buf_write(b, &id, sizeof (id)); debug(3, "Wrote object %s (%d)\n", (idp ? idp->ii_name : "(null)"), id); } static void write_functions(iidesc_t *idp, ctf_buf_t *b) { uint_t fdata[2]; uint_t id; int nargs; int i; if (!idp) { fdata[0] = 0; ctf_buf_write(b, &fdata[0], sizeof (fdata[0])); debug(3, "Wrote function (null)\n"); return; } nargs = idp->ii_nargs + (idp->ii_vargs != 0); if (nargs > CTF_V3_MAX_VLEN) { terminate("function %s has too many args: %d > %d\n", idp->ii_name, nargs, CTF_V3_MAX_VLEN); } fdata[0] = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, 1, nargs); fdata[1] = idp->ii_dtype->t_id; if (target_requires_swap) { SWAP_32(fdata[0]); SWAP_32(fdata[1]); } ctf_buf_write(b, fdata, sizeof (fdata)); for (i = 0; i < idp->ii_nargs; i++) { id = idp->ii_args[i]->t_id; if (target_requires_swap) { SWAP_32(id); } ctf_buf_write(b, &id, sizeof (id)); } if (idp->ii_vargs) { id = 0; ctf_buf_write(b, &id, sizeof (id)); } debug(3, "Wrote function %s (%d args)\n", idp->ii_name, nargs); } /* * Depending on the size of the type being described, either a ctf_stype_t (for * types with size < CTF_LSTRUCT_THRESH) or a ctf_type_t (all others) will be * written. We isolate the determination here so the rest of the writer code * doesn't need to care. */ static void write_sized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt, size_t size) { if (size > CTF_V3_MAX_SIZE) { ctt->ctt_size = CTF_V3_LSIZE_SENT; ctt->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size); ctt->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size); if (target_requires_swap) { SWAP_32(ctt->ctt_name); SWAP_32(ctt->ctt_info); SWAP_32(ctt->ctt_size); SWAP_32(ctt->ctt_lsizehi); SWAP_32(ctt->ctt_lsizelo); } ctf_buf_write(b, ctt, sizeof (*ctt)); } else { struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt; cts->ctt_size = size; if (target_requires_swap) { SWAP_32(cts->ctt_name); SWAP_32(cts->ctt_info); SWAP_32(cts->ctt_size); } ctf_buf_write(b, cts, sizeof (*cts)); } } static void write_unsized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt) { struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt; if (target_requires_swap) { SWAP_32(cts->ctt_name); SWAP_32(cts->ctt_info); SWAP_32(cts->ctt_size); } ctf_buf_write(b, cts, sizeof (*cts)); } static int write_type(void *arg1, void *arg2) { tdesc_t *tp = arg1; ctf_buf_t *b = arg2; elist_t *ep; mlist_t *mp; intr_t *ip; size_t offset; uint_t encoding; uint_t data; int isroot = tp->t_flags & TDESC_F_ISROOT; int i; struct ctf_type_v3 ctt; struct ctf_array_v3 cta; struct ctf_member_v3 ctm; struct ctf_lmember_v3 ctlm; struct ctf_enum cte; uint_t id; /* * There shouldn't be any holes in the type list (where a hole is * defined as two consecutive tdescs without consecutive ids), but * check for them just in case. If we do find holes, we need to make * fake entries to fill the holes, or we won't be able to reconstruct * the tree from the written data. */ if (++b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) { debug(2, "genctf: type hole from %d < x < %d\n", b->nptent - 1, CTF_V3_TYPE_TO_INDEX(tp->t_id)); ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0); ctt.ctt_info = CTF_V3_TYPE_INFO(0, 0, 0); while (b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) { write_sized_type_rec(b, &ctt, 0); b->nptent++; } } offset = strtab_insert(&b->ctb_strtab, tp->t_name); ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset); switch (tp->t_type) { case INTRINSIC: ip = tp->t_intr; if (ip->intr_type == INTR_INT) ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_INTEGER, isroot, 1); else ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FLOAT, isroot, 1); write_sized_type_rec(b, &ctt, tp->t_size); encoding = 0; if (ip->intr_type == INTR_INT) { if (ip->intr_signed) encoding |= CTF_INT_SIGNED; if (ip->intr_iformat == 'c') encoding |= CTF_INT_CHAR; else if (ip->intr_iformat == 'b') encoding |= CTF_INT_BOOL; else if (ip->intr_iformat == 'v') encoding |= CTF_INT_VARARGS; } else encoding = ip->intr_fformat; data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits); if (target_requires_swap) { SWAP_32(data); } ctf_buf_write(b, &data, sizeof (data)); break; case POINTER: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_POINTER, isroot, 0); ctt.ctt_type = tp->t_tdesc->t_id; write_unsized_type_rec(b, &ctt); break; case ARRAY: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ARRAY, isroot, 1); write_sized_type_rec(b, &ctt, tp->t_size); cta.cta_contents = tp->t_ardef->ad_contents->t_id; cta.cta_index = tp->t_ardef->ad_idxtype->t_id; cta.cta_nelems = tp->t_ardef->ad_nelems; if (target_requires_swap) { SWAP_32(cta.cta_contents); SWAP_32(cta.cta_index); SWAP_32(cta.cta_nelems); } ctf_buf_write(b, &cta, sizeof (cta)); break; case STRUCT: case UNION: for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next) i++; /* count up struct or union members */ if (i > CTF_V3_MAX_VLEN) { terminate("sou %s has too many members: %d > %d\n", tdesc_name(tp), i, CTF_V3_MAX_VLEN); } if (tp->t_type == STRUCT) ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_STRUCT, isroot, i); else ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_UNION, isroot, i); write_sized_type_rec(b, &ctt, tp->t_size); if (tp->t_size < CTF_V3_LSTRUCT_THRESH) { for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) { offset = strtab_insert(&b->ctb_strtab, mp->ml_name); ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset); ctm.ctm_type = mp->ml_type->t_id; ctm.ctm_offset = mp->ml_offset; if (target_requires_swap) { SWAP_32(ctm.ctm_name); SWAP_32(ctm.ctm_type); SWAP_32(ctm.ctm_offset); } ctf_buf_write(b, &ctm, sizeof (ctm)); } } else { for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) { offset = strtab_insert(&b->ctb_strtab, mp->ml_name); ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset); ctlm.ctlm_type = mp->ml_type->t_id; ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(mp->ml_offset); ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(mp->ml_offset); if (target_requires_swap) { SWAP_32(ctlm.ctlm_name); SWAP_32(ctlm.ctlm_type); SWAP_32(ctlm.ctlm_offsethi); SWAP_32(ctlm.ctlm_offsetlo); } ctf_buf_write(b, &ctlm, sizeof (ctlm)); } } break; case ENUM: for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next) i++; /* count up enum members */ if (i > CTF_V3_MAX_VLEN) { i = CTF_V3_MAX_VLEN; } ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ENUM, isroot, i); write_sized_type_rec(b, &ctt, tp->t_size); for (ep = tp->t_emem; ep != NULL && i > 0; ep = ep->el_next) { offset = strtab_insert(&b->ctb_strtab, ep->el_name); cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset); cte.cte_value = ep->el_number; if (target_requires_swap) { SWAP_32(cte.cte_name); SWAP_32(cte.cte_value); } ctf_buf_write(b, &cte, sizeof (cte)); i--; } break; case FORWARD: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FORWARD, isroot, 0); ctt.ctt_type = 0; write_unsized_type_rec(b, &ctt); break; case TYPEDEF: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0); ctt.ctt_type = tp->t_tdesc->t_id; write_unsized_type_rec(b, &ctt); break; case VOLATILE: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_VOLATILE, isroot, 0); ctt.ctt_type = tp->t_tdesc->t_id; write_unsized_type_rec(b, &ctt); break; case CONST: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_CONST, isroot, 0); ctt.ctt_type = tp->t_tdesc->t_id; write_unsized_type_rec(b, &ctt); break; case FUNCTION: i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs; if (i > CTF_V3_MAX_VLEN) { terminate("function %s has too many args: %d > %d\n", tdesc_name(tp), i, CTF_V3_MAX_VLEN); } ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, isroot, i); ctt.ctt_type = tp->t_fndef->fn_ret->t_id; write_unsized_type_rec(b, &ctt); for (i = 0; i < (int) tp->t_fndef->fn_nargs; i++) { id = tp->t_fndef->fn_args[i]->t_id; if (target_requires_swap) { SWAP_32(id); } ctf_buf_write(b, &id, sizeof (id)); } if (tp->t_fndef->fn_vargs) { id = 0; ctf_buf_write(b, &id, sizeof (id)); i++; } break; case RESTRICT: ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_RESTRICT, isroot, 0); ctt.ctt_type = tp->t_tdesc->t_id; write_unsized_type_rec(b, &ctt); break; default: warning("Can't write unknown type %d\n", tp->t_type); } debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp)); return (1); } typedef struct resbuf { caddr_t rb_base; caddr_t rb_ptr; size_t rb_size; z_stream rb_zstr; } resbuf_t; static void rbzs_grow(resbuf_t *rb) { off_t ptroff = (caddr_t)rb->rb_zstr.next_out - rb->rb_base; rb->rb_size += RES_BUF_CHUNK_SIZE; rb->rb_base = xrealloc(rb->rb_base, rb->rb_size); rb->rb_ptr = rb->rb_base + ptroff; rb->rb_zstr.next_out = (Bytef *)(rb->rb_ptr); rb->rb_zstr.avail_out += RES_BUF_CHUNK_SIZE; } static void compress_start(resbuf_t *rb) { int rc; rb->rb_zstr.zalloc = (alloc_func)0; rb->rb_zstr.zfree = (free_func)0; rb->rb_zstr.opaque = (voidpf)0; if ((rc = deflateInit(&rb->rb_zstr, Z_BEST_COMPRESSION)) != Z_OK) parseterminate("zlib start failed: %s", zError(rc)); } static ssize_t compress_buffer(void *buf, size_t n, void *data) { resbuf_t *rb = (resbuf_t *)data; int rc; rb->rb_zstr.next_out = (Bytef *)rb->rb_ptr; rb->rb_zstr.avail_out = rb->rb_size - (rb->rb_ptr - rb->rb_base); rb->rb_zstr.next_in = buf; rb->rb_zstr.avail_in = n; while (rb->rb_zstr.avail_in) { if (rb->rb_zstr.avail_out == 0) rbzs_grow(rb); if ((rc = deflate(&rb->rb_zstr, Z_NO_FLUSH)) != Z_OK) parseterminate("zlib deflate failed: %s", zError(rc)); } rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out; return (n); } static void compress_flush(resbuf_t *rb, int type) { int rc; for (;;) { if (rb->rb_zstr.avail_out == 0) rbzs_grow(rb); rc = deflate(&rb->rb_zstr, type); if ((type == Z_FULL_FLUSH && rc == Z_BUF_ERROR) || (type == Z_FINISH && rc == Z_STREAM_END)) break; else if (rc != Z_OK) parseterminate("zlib finish failed: %s", zError(rc)); } rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out; } static void compress_end(resbuf_t *rb) { int rc; compress_flush(rb, Z_FINISH); if ((rc = deflateEnd(&rb->rb_zstr)) != Z_OK) parseterminate("zlib end failed: %s", zError(rc)); } /* * Pad the buffer to a power-of-2 boundary */ static void pad_buffer(ctf_buf_t *buf, int align) { uint_t cur = ctf_buf_cur(buf); ssize_t topad = (align - (cur % align)) % align; static const char pad[8] = { 0 }; while (topad > 0) { ctf_buf_write(buf, pad, (topad > 8 ? 8 : topad)); topad -= 8; } } static ssize_t bcopy_data(void *buf, size_t n, void *data) { caddr_t *posp = (caddr_t *)data; bcopy(buf, *posp, n); *posp += n; return (n); } static caddr_t write_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp) { caddr_t outbuf; caddr_t bufpos; outbuf = xmalloc(sizeof (ctf_header_t) + (buf->ctb_ptr - buf->ctb_base) + buf->ctb_strtab.str_size); bufpos = outbuf; (void) bcopy_data(h, sizeof (ctf_header_t), &bufpos); (void) bcopy_data(buf->ctb_base, buf->ctb_ptr - buf->ctb_base, &bufpos); (void) strtab_write(&buf->ctb_strtab, bcopy_data, &bufpos); *resszp = bufpos - outbuf; return (outbuf); } /* * Create the compression buffer, and fill it with the CTF and string * table data. We flush the compression state between the two so the * dictionary used for the string tables won't be polluted with values * that made sense for the CTF data. */ static caddr_t write_compressed_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp) { resbuf_t resbuf; resbuf.rb_size = RES_BUF_CHUNK_SIZE; resbuf.rb_base = xmalloc(resbuf.rb_size); bcopy(h, resbuf.rb_base, sizeof (ctf_header_t)); resbuf.rb_ptr = resbuf.rb_base + sizeof (ctf_header_t); compress_start(&resbuf); (void) compress_buffer(buf->ctb_base, buf->ctb_ptr - buf->ctb_base, &resbuf); compress_flush(&resbuf, Z_FULL_FLUSH); (void) strtab_write(&buf->ctb_strtab, compress_buffer, &resbuf); compress_end(&resbuf); *resszp = (resbuf.rb_ptr - resbuf.rb_base); return (resbuf.rb_base); } caddr_t ctf_gen(iiburst_t *iiburst, size_t *resszp, int do_compress) { ctf_buf_t *buf = ctf_buf_new(); ctf_header_t h; caddr_t outbuf; int i; target_requires_swap = do_compress & CTF_SWAP_BYTES; do_compress &= ~CTF_SWAP_BYTES; /* * Prepare the header, and create the CTF output buffers. The data * object section and function section are both lists of 2-byte * integers; we pad these out to the next 4-byte boundary if needed. */ h.cth_magic = CTF_MAGIC; h.cth_version = CTF_VERSION_3; h.cth_flags = do_compress ? CTF_F_COMPRESS : 0; h.cth_parlabel = strtab_insert(&buf->ctb_strtab, iiburst->iib_td->td_parlabel); h.cth_parname = strtab_insert(&buf->ctb_strtab, iiburst->iib_td->td_parname); h.cth_lbloff = 0; (void) list_iter(iiburst->iib_td->td_labels, write_label, buf); pad_buffer(buf, 2); h.cth_objtoff = ctf_buf_cur(buf); for (i = 0; i < iiburst->iib_nobjts; i++) write_objects(iiburst->iib_objts[i], buf); pad_buffer(buf, 2); h.cth_funcoff = ctf_buf_cur(buf); for (i = 0; i < iiburst->iib_nfuncs; i++) write_functions(iiburst->iib_funcs[i], buf); pad_buffer(buf, 4); h.cth_typeoff = ctf_buf_cur(buf); (void) list_iter(iiburst->iib_types, write_type, buf); debug(2, "CTF wrote %d types\n", list_count(iiburst->iib_types)); h.cth_stroff = ctf_buf_cur(buf); h.cth_strlen = strtab_size(&buf->ctb_strtab); if (target_requires_swap) { SWAP_16(h.cth_preamble.ctp_magic); SWAP_32(h.cth_parlabel); SWAP_32(h.cth_parname); SWAP_32(h.cth_lbloff); SWAP_32(h.cth_objtoff); SWAP_32(h.cth_funcoff); SWAP_32(h.cth_typeoff); SWAP_32(h.cth_stroff); SWAP_32(h.cth_strlen); } /* * We only do compression for ctfmerge, as ctfconvert is only * supposed to be used on intermediary build objects. This is * significantly faster. */ if (do_compress) outbuf = write_compressed_buffer(&h, buf, resszp); else outbuf = write_buffer(&h, buf, resszp); ctf_buf_free(buf); return (outbuf); } static void get_ctt_info(ctf_header_t *h, void *v, uint_t *kind, uint_t *vlen, int *isroot) { if (h->cth_version == CTF_VERSION_2) { struct ctf_type_v2 *ctt = v; *kind = CTF_V2_INFO_KIND(ctt->ctt_info); *vlen = CTF_V2_INFO_VLEN(ctt->ctt_info); *isroot = CTF_V2_INFO_ISROOT(ctt->ctt_info); } else { struct ctf_type_v3 *ctt = v; *kind = CTF_V3_INFO_KIND(ctt->ctt_info); *vlen = CTF_V3_INFO_VLEN(ctt->ctt_info); *isroot = CTF_V3_INFO_ISROOT(ctt->ctt_info); } } static void get_ctt_size(ctf_header_t *h, void *v, size_t *sizep, size_t *incrementp) { if (h->cth_version == CTF_VERSION_2) { struct ctf_type_v2 *ctt = v; if (ctt->ctt_size == CTF_V2_LSIZE_SENT) { *sizep = (size_t)CTF_TYPE_LSIZE(ctt); *incrementp = sizeof (struct ctf_type_v2); } else { *sizep = ctt->ctt_size; *incrementp = sizeof (struct ctf_stype_v2); } } else { struct ctf_type_v3 *ctt = v; if (ctt->ctt_size == CTF_V3_LSIZE_SENT) { *sizep = (size_t)CTF_TYPE_LSIZE(ctt); *incrementp = sizeof (struct ctf_type_v3); } else { *sizep = ctt->ctt_size; *incrementp = sizeof (struct ctf_stype_v3); } } } static int count_types(ctf_header_t *h, caddr_t data) { caddr_t dptr = data + h->cth_typeoff; uint_t version = h->cth_version; size_t idwidth; int count = 0; idwidth = version == CTF_VERSION_2 ? 2 : 4; dptr = data + h->cth_typeoff; while (dptr < data + h->cth_stroff) { void *v = (void *) dptr; size_t size, increment; uint_t vlen, kind; int isroot; get_ctt_info(h, v, &kind, &vlen, &isroot); get_ctt_size(h, v, &size, &increment); switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: dptr += 4; break; case CTF_K_POINTER: case CTF_K_FORWARD: case CTF_K_TYPEDEF: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: case CTF_K_FUNCTION: dptr += idwidth * vlen; break; case CTF_K_ARRAY: if (version == CTF_VERSION_2) dptr += sizeof (struct ctf_array_v2); else dptr += sizeof (struct ctf_array_v3); break; case CTF_K_STRUCT: case CTF_K_UNION: if (version == CTF_VERSION_2) { if (size < CTF_V2_LSTRUCT_THRESH) dptr += sizeof (struct ctf_member_v2) * vlen; else dptr += sizeof (struct ctf_lmember_v2) * vlen; } else { if (size < CTF_V3_LSTRUCT_THRESH) dptr += sizeof (struct ctf_member_v3) * vlen; else dptr += sizeof (struct ctf_lmember_v3) * vlen; } break; case CTF_K_ENUM: dptr += sizeof (ctf_enum_t) * vlen; break; case CTF_K_UNKNOWN: break; default: parseterminate("Unknown CTF type %d (#%d) at %#x", kind, count, dptr - data); } dptr += increment; count++; } debug(3, "CTF read %d types\n", count); return (count); } /* * Resurrect the labels stored in the CTF data, returning the index associated * with a label provided by the caller. There are several cases, outlined * below. Note that, given two labels, the one associated with the lesser type * index is considered to be older than the other. * * 1. matchlbl == NULL - return the index of the most recent label. * 2. matchlbl == "BASE" - return the index of the oldest label. * 3. matchlbl != NULL, but doesn't match any labels in the section - warn * the user, and proceed as if matchlbl == "BASE" (for safety). * 4. matchlbl != NULL, and matches one of the labels in the section - return * the type index associated with the label. */ static int resurrect_labels(ctf_header_t *h, tdata_t *td, caddr_t ctfdata, char *matchlbl) { caddr_t buf = ctfdata + h->cth_lbloff; caddr_t sbuf = ctfdata + h->cth_stroff; size_t bufsz = h->cth_objtoff - h->cth_lbloff; int lastidx = 0, baseidx = -1; char *baselabel = NULL; ctf_lblent_t *ctl; void *v = (void *) buf; for (ctl = v; (caddr_t)ctl < buf + bufsz; ctl++) { char *label = sbuf + ctl->ctl_label; lastidx = ctl->ctl_typeidx; debug(3, "Resurrected label %s type idx %d\n", label, lastidx); tdata_label_add(td, label, lastidx); if (baseidx == -1) { baseidx = lastidx; baselabel = label; if (matchlbl != NULL && streq(matchlbl, "BASE")) return (lastidx); } if (matchlbl != NULL && streq(label, matchlbl)) return (lastidx); } if (matchlbl != NULL) { /* User provided a label that didn't match */ warning("%s: Cannot find label `%s' - using base (%s)\n", curfile, matchlbl, (baselabel ? baselabel : "NONE")); tdata_label_free(td); tdata_label_add(td, baselabel, baseidx); return (baseidx); } return (lastidx); } static void resurrect_objects(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize, caddr_t ctfdata, symit_data_t *si) { caddr_t buf = ctfdata + h->cth_objtoff; size_t bufsz = h->cth_funcoff - h->cth_objtoff; caddr_t dptr; size_t idwidth; idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4; symit_reset(si); for (dptr = buf; dptr < buf + bufsz; dptr += idwidth) { uint32_t id = 0; memcpy(&id, (void *) dptr, idwidth); iidesc_t *ii; GElf_Sym *sym; if (!(sym = symit_next(si, STT_OBJECT)) && id != 0) { parseterminate( "Unexpected end of object symbols at %x of %x", dptr - buf, bufsz); } if (id == 0) { debug(3, "Skipping null object\n"); continue; } else if (id >= (uint_t)tdsize) { parseterminate("Reference to invalid type %d", id); } ii = iidesc_new(symit_name(si)); ii->ii_dtype = tdarr[id]; if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) { ii->ii_type = II_SVAR; ii->ii_owner = xstrdup(symit_curfile(si)); } else ii->ii_type = II_GVAR; hash_add(td->td_iihash, ii); debug(3, "Resurrected %s object %s (%d) from %s\n", (ii->ii_type == II_GVAR ? "global" : "static"), ii->ii_name, id, (ii->ii_owner ? ii->ii_owner : "(none)")); } } static void resurrect_functions(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize, caddr_t ctfdata, symit_data_t *si) { caddr_t buf = ctfdata + h->cth_funcoff; size_t bufsz = h->cth_typeoff - h->cth_funcoff; size_t idwidth; caddr_t dptr = buf; iidesc_t *ii; GElf_Sym *sym; int i; idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4; symit_reset(si); while (dptr < buf + bufsz) { uint32_t id, info, retid; info = 0; memcpy(&info, (void *) dptr, idwidth); dptr += idwidth; if (!(sym = symit_next(si, STT_FUNC)) && info != 0) parseterminate("Unexpected end of function symbols"); if (info == 0) { debug(3, "Skipping null function (%s)\n", symit_name(si)); continue; } retid = 0; memcpy(&retid, (void *) dptr, idwidth); dptr += idwidth; if (retid >= (uint_t)tdsize) parseterminate("Reference to invalid type %d", retid); ii = iidesc_new(symit_name(si)); ii->ii_dtype = tdarr[retid]; if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) { ii->ii_type = II_SFUN; ii->ii_owner = xstrdup(symit_curfile(si)); } else ii->ii_type = II_GFUN; if (h->cth_version == CTF_VERSION_2) ii->ii_nargs = CTF_V2_INFO_VLEN(info); else ii->ii_nargs = CTF_V3_INFO_VLEN(info); if (ii->ii_nargs) ii->ii_args = xmalloc(sizeof (tdesc_t *) * ii->ii_nargs); for (i = 0; i < ii->ii_nargs; i++, dptr += idwidth) { id = 0; memcpy(&id, (void *) dptr, idwidth); if (id >= (uint_t)tdsize) parseterminate("Reference to invalid type %d", id); ii->ii_args[i] = tdarr[id]; } if (ii->ii_nargs && ii->ii_args[ii->ii_nargs - 1] == NULL) { ii->ii_nargs--; ii->ii_vargs = 1; } hash_add(td->td_iihash, ii); debug(3, "Resurrected %s function %s (%d, %d args)\n", (ii->ii_type == II_GFUN ? "global" : "static"), ii->ii_name, retid, ii->ii_nargs); } } static void resurrect_types(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize, caddr_t ctfdata, int maxid) { caddr_t buf = ctfdata + h->cth_typeoff; size_t bufsz = h->cth_stroff - h->cth_typeoff; caddr_t sbuf = ctfdata + h->cth_stroff; caddr_t dptr = buf; tdesc_t *tdp; uint_t data; uint_t encoding; size_t idwidth, size, increment; int tcnt; int iicnt = 0; tid_t tid, argid; int isroot, kind, vlen; int i, version; elist_t **epp; mlist_t **mpp; intr_t *ip; version = h->cth_version; idwidth = version == CTF_VERSION_2 ? 2 : 4; /* * A maxid of zero indicates a request to resurrect all types, so reset * maxid to the maximum type id. */ if (maxid == 0) { maxid = version == CTF_VERSION_2 ? CTF_V2_MAX_TYPE : CTF_V3_MAX_TYPE; } for (dptr = buf, tcnt = 0, tid = 1; dptr < buf + bufsz; tcnt++, tid++) { ctf_enum_t *cte; uint_t name, type; void *v; if (tid > maxid) break; if (tid >= tdsize) parseterminate("Reference to invalid type %d", tid); get_ctt_info(h, dptr, &kind, &vlen, &isroot); get_ctt_size(h, dptr, &size, &increment); if (version == CTF_VERSION_2) { struct ctf_type_v2 *ctt = (void *) dptr; name = ctt->ctt_name; type = ctt->ctt_type; } else { struct ctf_type_v3 *ctt = (void *) dptr; name = ctt->ctt_name; type = ctt->ctt_type; } dptr += increment; tdp = tdarr[tid]; if (CTF_NAME_STID(name) != CTF_STRTAB_0) parseterminate( "Unable to cope with non-zero strtab id"); if (CTF_NAME_OFFSET(name) != 0) { tdp->t_name = xstrdup(sbuf + CTF_NAME_OFFSET(name)); } else tdp->t_name = NULL; switch (kind) { case CTF_K_INTEGER: tdp->t_type = INTRINSIC; tdp->t_size = size; v = (void *) dptr; data = *((uint_t *)v); dptr += sizeof (uint_t); encoding = CTF_INT_ENCODING(data); ip = xmalloc(sizeof (intr_t)); ip->intr_type = INTR_INT; ip->intr_signed = (encoding & CTF_INT_SIGNED) ? 1 : 0; if (encoding & CTF_INT_CHAR) ip->intr_iformat = 'c'; else if (encoding & CTF_INT_BOOL) ip->intr_iformat = 'b'; else if (encoding & CTF_INT_VARARGS) ip->intr_iformat = 'v'; else ip->intr_iformat = '\0'; ip->intr_offset = CTF_INT_OFFSET(data); ip->intr_nbits = CTF_INT_BITS(data); tdp->t_intr = ip; break; case CTF_K_FLOAT: tdp->t_type = INTRINSIC; tdp->t_size = size; v = (void *) dptr; data = *((uint_t *)v); dptr += sizeof (uint_t); ip = xcalloc(sizeof (intr_t)); ip->intr_type = INTR_REAL; ip->intr_fformat = CTF_FP_ENCODING(data); ip->intr_offset = CTF_FP_OFFSET(data); ip->intr_nbits = CTF_FP_BITS(data); tdp->t_intr = ip; break; case CTF_K_POINTER: tdp->t_type = POINTER; tdp->t_tdesc = tdarr[type]; break; case CTF_K_ARRAY: { uint_t contents, index, nelems; tdp->t_type = ARRAY; tdp->t_size = size; if (version == CTF_VERSION_2) { struct ctf_array_v2 *cta = (void *) dptr; contents = cta->cta_contents; index = cta->cta_index; nelems = cta->cta_nelems; dptr += sizeof (*cta); } else { struct ctf_array_v3 *cta = (void *) dptr; contents = cta->cta_contents; index = cta->cta_index; nelems = cta->cta_nelems; dptr += sizeof (*cta); } tdp->t_ardef = xmalloc(sizeof (ardef_t)); tdp->t_ardef->ad_contents = tdarr[contents]; tdp->t_ardef->ad_idxtype = tdarr[index]; tdp->t_ardef->ad_nelems = nelems; break; } case CTF_K_STRUCT: case CTF_K_UNION: { tdp->t_type = (kind == CTF_K_STRUCT ? STRUCT : UNION); tdp->t_size = size; if (version == CTF_VERSION_2) { if (size < CTF_V2_LSTRUCT_THRESH) { for (i = 0, mpp = &tdp->t_members; i < vlen; i++, mpp = &((*mpp)->ml_next)) { v = (void *) dptr; struct ctf_member_v2 *ctm = v; dptr += sizeof (struct ctf_member_v2); *mpp = xmalloc(sizeof (mlist_t)); (*mpp)->ml_name = xstrdup(sbuf + ctm->ctm_name); (*mpp)->ml_type = tdarr[ctm->ctm_type]; (*mpp)->ml_offset = ctm->ctm_offset; (*mpp)->ml_size = 0; } } else { for (i = 0, mpp = &tdp->t_members; i < vlen; i++, mpp = &((*mpp)->ml_next)) { v = (void *) dptr; struct ctf_lmember_v2 *ctlm = v; dptr += sizeof (struct ctf_lmember_v2); *mpp = xmalloc(sizeof (mlist_t)); (*mpp)->ml_name = xstrdup(sbuf + ctlm->ctlm_name); (*mpp)->ml_type = tdarr[ctlm->ctlm_type]; (*mpp)->ml_offset = (int)CTF_LMEM_OFFSET(ctlm); (*mpp)->ml_size = 0; } } } else { if (size < CTF_V3_LSTRUCT_THRESH) { for (i = 0, mpp = &tdp->t_members; i < vlen; i++, mpp = &((*mpp)->ml_next)) { v = (void *) dptr; struct ctf_member_v3 *ctm = v; dptr += sizeof (struct ctf_member_v3); *mpp = xmalloc(sizeof (mlist_t)); (*mpp)->ml_name = xstrdup(sbuf + ctm->ctm_name); (*mpp)->ml_type = tdarr[ctm->ctm_type]; (*mpp)->ml_offset = ctm->ctm_offset; (*mpp)->ml_size = 0; } } else { for (i = 0, mpp = &tdp->t_members; i < vlen; i++, mpp = &((*mpp)->ml_next)) { v = (void *) dptr; struct ctf_lmember_v3 *ctlm = v; dptr += sizeof (struct ctf_lmember_v3); *mpp = xmalloc(sizeof (mlist_t)); (*mpp)->ml_name = xstrdup(sbuf + ctlm->ctlm_name); (*mpp)->ml_type = tdarr[ctlm->ctlm_type]; (*mpp)->ml_offset = (int)CTF_LMEM_OFFSET(ctlm); (*mpp)->ml_size = 0; } } } *mpp = NULL; break; } case CTF_K_ENUM: tdp->t_type = ENUM; tdp->t_size = size; for (i = 0, epp = &tdp->t_emem; i < vlen; i++, epp = &((*epp)->el_next)) { v = (void *) dptr; cte = v; dptr += sizeof (ctf_enum_t); *epp = xmalloc(sizeof (elist_t)); (*epp)->el_name = xstrdup(sbuf + cte->cte_name); (*epp)->el_number = cte->cte_value; } *epp = NULL; break; case CTF_K_FORWARD: tdp->t_type = FORWARD; list_add(&td->td_fwdlist, tdp); break; case CTF_K_TYPEDEF: tdp->t_type = TYPEDEF; tdp->t_tdesc = tdarr[type]; break; case CTF_K_VOLATILE: tdp->t_type = VOLATILE; tdp->t_tdesc = tdarr[type]; break; case CTF_K_CONST: tdp->t_type = CONST; tdp->t_tdesc = tdarr[type]; break; case CTF_K_FUNCTION: tdp->t_type = FUNCTION; tdp->t_fndef = xcalloc(sizeof (fndef_t)); tdp->t_fndef->fn_ret = tdarr[type]; v = (void *) (dptr + (idwidth * (vlen - 1))); if (vlen > 0 && *(uint_t *)v == 0) tdp->t_fndef->fn_vargs = 1; tdp->t_fndef->fn_nargs = vlen - tdp->t_fndef->fn_vargs; tdp->t_fndef->fn_args = xcalloc(sizeof (tdesc_t) * vlen - tdp->t_fndef->fn_vargs); for (i = 0; i < vlen; i++) { v = (void *) dptr; memcpy(&argid, v, idwidth); dptr += idwidth; if (argid != 0) tdp->t_fndef->fn_args[i] = tdarr[argid]; } dptr = (caddr_t) roundup2((uintptr_t) dptr, 4); break; case CTF_K_RESTRICT: tdp->t_type = RESTRICT; tdp->t_tdesc = tdarr[type]; break; case CTF_K_UNKNOWN: break; default: warning("Can't parse unknown CTF type %d\n", kind); } if (isroot) { iidesc_t *ii = iidesc_new(tdp->t_name); if (tdp->t_type == STRUCT || tdp->t_type == UNION || tdp->t_type == ENUM) ii->ii_type = II_SOU; else ii->ii_type = II_TYPE; ii->ii_dtype = tdp; hash_add(td->td_iihash, ii); iicnt++; } debug(3, "Resurrected %d %stype %s (%d)\n", tdp->t_type, (isroot ? "root " : ""), tdesc_name(tdp), tdp->t_id); } debug(3, "Resurrected %d types (%d were roots)\n", tcnt, iicnt); } /* * For lack of other inspiration, we're going to take the boring route. We * count the number of types. This lets us malloc that many tdesc structs * before we start filling them in. This has the advantage of allowing us to * avoid a merge-esque remap step. */ static tdata_t * ctf_parse(ctf_header_t *h, caddr_t buf, symit_data_t *si, char *label) { tdata_t *td = tdata_new(); tdesc_t **tdarr; int ntypes = count_types(h, buf); int idx, i; /* shudder */ tdarr = xcalloc(sizeof (tdesc_t *) * (ntypes + 1)); tdarr[0] = NULL; for (i = 1; i <= ntypes; i++) { tdarr[i] = xcalloc(sizeof (tdesc_t)); tdarr[i]->t_id = i; } td->td_parlabel = xstrdup(buf + h->cth_stroff + h->cth_parlabel); /* we have the technology - we can rebuild them */ idx = resurrect_labels(h, td, buf, label); resurrect_objects(h, td, tdarr, ntypes + 1, buf, si); resurrect_functions(h, td, tdarr, ntypes + 1, buf, si); resurrect_types(h, td, tdarr, ntypes + 1, buf, idx); free(tdarr); td->td_nextid = ntypes + 1; return (td); } static size_t decompress_ctf(caddr_t cbuf, size_t cbufsz, caddr_t dbuf, size_t dbufsz) { z_stream zstr; int rc; zstr.zalloc = (alloc_func)0; zstr.zfree = (free_func)0; zstr.opaque = (voidpf)0; zstr.next_in = (Bytef *)cbuf; zstr.avail_in = cbufsz; zstr.next_out = (Bytef *)dbuf; zstr.avail_out = dbufsz; if ((rc = inflateInit(&zstr)) != Z_OK || (rc = inflate(&zstr, Z_NO_FLUSH)) != Z_STREAM_END || (rc = inflateEnd(&zstr)) != Z_OK) { warning("CTF decompress zlib error %s\n", zError(rc)); return (0); } debug(3, "reflated %lu bytes to %lu, pointer at %d\n", zstr.total_in, zstr.total_out, (caddr_t)zstr.next_in - cbuf); return (zstr.total_out); } /* * Reconstruct the type tree from a given buffer of CTF data. Only the types * up to the type associated with the provided label, inclusive, will be * reconstructed. If a NULL label is provided, all types will be reconstructed. * * This function won't work on files that have been uniquified. */ tdata_t * ctf_load(char *file, caddr_t buf, size_t bufsz, symit_data_t *si, char *label) { ctf_header_t *h; caddr_t ctfdata; size_t ctfdatasz; tdata_t *td; curfile = file; if (bufsz < sizeof (ctf_header_t)) parseterminate("Corrupt CTF - short header"); void *v = (void *) buf; h = v; buf += sizeof (ctf_header_t); bufsz -= sizeof (ctf_header_t); if (h->cth_magic != CTF_MAGIC) parseterminate("Corrupt CTF - bad magic 0x%x", h->cth_magic); if (h->cth_version != CTF_VERSION_2 && h->cth_version != CTF_VERSION_3) parseterminate("Unknown CTF version %d", h->cth_version); ctfdatasz = h->cth_stroff + h->cth_strlen; if (h->cth_flags & CTF_F_COMPRESS) { size_t actual; ctfdata = xmalloc(ctfdatasz); if ((actual = decompress_ctf(buf, bufsz, ctfdata, ctfdatasz)) != ctfdatasz) { parseterminate("Corrupt CTF - short decompression " "(was %d, expecting %d)", actual, ctfdatasz); } } else { ctfdata = buf; ctfdatasz = bufsz; } td = ctf_parse(h, ctfdata, si, label); if (h->cth_flags & CTF_F_COMPRESS) free(ctfdata); curfile = NULL; return (td); }