/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ /* * DTrace Process Control * * This file provides a set of routines that permit libdtrace and its clients * to create and grab process handles using libproc, and to share these handles * between library mechanisms that need libproc access, such as ustack(), and * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. * The library provides several mechanisms in the libproc control layer: * * Reference Counting: The library code and client code can independently grab * the same process handles without interfering with one another. Only when * the reference count drops to zero and the handle is not being cached (see * below for more information on caching) will Prelease() be called on it. * * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and * the reference count drops to zero, the handle is not immediately released. * Instead, libproc handles are maintained on dph_lrulist in order from most- * recently accessed to least-recently accessed. Idle handles are maintained * until a pre-defined LRU cache limit is exceeded, permitting repeated calls * to ustack() to avoid the overhead of releasing and re-grabbing processes. * * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) * or created by dt_proc_create(), a control thread is created to provide * callbacks on process exit and symbol table caching on dlopen()s. * * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() * are provided to synchronize access to the libproc handle between libdtrace * code and client code and the control thread's use of the ps_prochandle. * * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for * synchronization between libdtrace control threads and the client thread. * * The ps_prochandles themselves are maintained along with a dt_proc_t struct * in a hash table indexed by PID. This provides basic locking and reference * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. * The dph_lrucnt and dph_lrulim count the number of cacheable processes and * the current limit on the number of actively cached entries. * * The control thread for a process establishes breakpoints at the rtld_db * locations of interest, updates mappings and symbol tables at these points, * and handles exec and fork (by always following the parent). The control * thread automatically exits when the process dies or control is lost. * * A simple notification mechanism is provided for libdtrace clients using * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If * such an event occurs, the dt_proc_t itself is enqueued on a notification * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake * up using this condition and will then call the client handler as necessary. */ #include #include #include #include #include #include #include #include #include #include #define IS_SYS_EXEC(w) (w == SYS_execve) #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork) static dt_bkpt_t * dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) { struct ps_prochandle *P = dpr->dpr_proc; dt_bkpt_t *dbp; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { dbp->dbp_func = func; dbp->dbp_data = data; dbp->dbp_addr = addr; if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) dbp->dbp_active = B_TRUE; dt_list_append(&dpr->dpr_bps, dbp); } return (dbp); } static void dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) { int state = Pstate(dpr->dpr_proc); dt_bkpt_t *dbp, *nbp; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { if (delbkpts && dbp->dbp_active && state != PS_LOST && state != PS_UNDEAD) { (void) Pdelbkpt(dpr->dpr_proc, dbp->dbp_addr, dbp->dbp_instr); } nbp = dt_list_next(dbp); dt_list_delete(&dpr->dpr_bps, dbp); dt_free(dpr->dpr_hdl, dbp); } } static void dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) { unsigned long pc; dt_bkpt_t *dbp; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); proc_regget(dpr->dpr_proc, REG_PC, &pc); proc_bkptregadj(&pc); for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = dt_list_next(dbp)) { if (pc == dbp->dbp_addr) break; } if (dbp == NULL) { dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", (int)dpr->dpr_pid, pc); return; } dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); dbp->dbp_func(dtp, dpr, dbp->dbp_data); (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); } static void dt_proc_bpenable(dt_proc_t *dpr) { dt_bkpt_t *dbp; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = dt_list_next(dbp)) { if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, dbp->dbp_addr, &dbp->dbp_instr) == 0) dbp->dbp_active = B_TRUE; } dt_dprintf("breakpoints enabled\n"); } static void dt_proc_bpdisable(dt_proc_t *dpr) { dt_bkpt_t *dbp; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = dt_list_next(dbp)) { if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, dbp->dbp_addr, dbp->dbp_instr) == 0) dbp->dbp_active = B_FALSE; } dt_dprintf("breakpoints disabled\n"); } static void dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, const char *msg) { dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); if (dprn == NULL) { dt_dprintf("failed to allocate notification for %d %s\n", (int)dpr->dpr_pid, msg); } else { dprn->dprn_dpr = dpr; if (msg == NULL) dprn->dprn_errmsg[0] = '\0'; else (void) strlcpy(dprn->dprn_errmsg, msg, sizeof (dprn->dprn_errmsg)); (void) pthread_mutex_lock(&dph->dph_lock); dprn->dprn_next = dph->dph_notify; dph->dph_notify = dprn; (void) pthread_cond_broadcast(&dph->dph_cv); (void) pthread_mutex_unlock(&dph->dph_lock); } } /* * Check to see if the control thread was requested to stop when the victim * process reached a particular event (why) rather than continuing the victim. * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). * If 'why' is not set, this function returns immediately and does nothing. */ static void dt_proc_stop(dt_proc_t *dpr, uint8_t why) { assert(DT_MUTEX_HELD(&dpr->dpr_lock)); assert(why != DT_PROC_STOP_IDLE); if (dpr->dpr_stop & why) { dpr->dpr_stop |= DT_PROC_STOP_IDLE; dpr->dpr_stop &= ~why; (void) pthread_cond_broadcast(&dpr->dpr_cv); /* * We disable breakpoints while stopped to preserve the * integrity of the program text for both our own disassembly * and that of the kernel. */ dt_proc_bpdisable(dpr); while (dpr->dpr_stop & DT_PROC_STOP_IDLE) (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); dt_proc_bpenable(dpr); } } /*ARGSUSED*/ static void dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) { dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); dt_proc_stop(dpr, DT_PROC_STOP_MAIN); } static void dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) { rd_event_msg_t rdm; rd_err_e err; if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { dt_dprintf("pid %d: failed to get %s event message: %s\n", (int)dpr->dpr_pid, evname, rd_errstr(err)); return; } dt_dprintf("pid %d: rtld event %s type=%d state %d\n", (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); switch (rdm.type) { case RD_DLACTIVITY: if (rdm.u.state != RD_CONSISTENT) break; Pupdate_syms(dpr->dpr_proc); if (dt_pid_create_probes_module(dtp, dpr) != 0) dt_proc_notify(dtp, dtp->dt_procs, dpr, dpr->dpr_errmsg); break; case RD_PREINIT: Pupdate_syms(dpr->dpr_proc); dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); break; case RD_POSTINIT: Pupdate_syms(dpr->dpr_proc); dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); break; } } static void dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) { rd_notify_t rdn; rd_err_e err; if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { dt_dprintf("pid %d: failed to get event address for %s: %s\n", (int)dpr->dpr_pid, evname, rd_errstr(err)); return; } if (rdn.type != RD_NOTIFY_BPT) { dt_dprintf("pid %d: event %s has unexpected type %d\n", (int)dpr->dpr_pid, evname, rdn.type); return; } (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, /* XXX ugly */ (dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname)); } /* * Common code for enabling events associated with the run-time linker after * attaching to a process or after a victim process completes an exec(2). */ static void dt_proc_attach(dt_proc_t *dpr, int exec) { rd_err_e err; GElf_Sym sym; assert(DT_MUTEX_HELD(&dpr->dpr_lock)); if (exec) { dt_proc_bpdestroy(dpr, B_FALSE); } if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); } else { dt_dprintf("pid %d: failed to enable rtld events: %s\n", (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : "rtld_db agent initialization failed"); } Pupdate_maps(dpr->dpr_proc); if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, "a.out", "main", &sym, NULL) == 0) { (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); } else { dt_dprintf("pid %d: failed to find a.out`main: %s\n", (int)dpr->dpr_pid, strerror(errno)); } } typedef struct dt_proc_control_data { dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ dt_proc_t *dpcd_proc; /* proccess to control */ } dt_proc_control_data_t; /* * Main loop for all victim process control threads. We initialize all the * appropriate /proc control mechanisms, and then enter a loop waiting for * the process to stop on an event or die. We process any events by calling * appropriate subroutines, and exit when the victim dies or we lose control. * * The control thread synchronizes the use of dpr_proc with other libdtrace * threads using dpr_lock. We hold the lock for all of our operations except * waiting while the process is running: this is accomplished by writing a * PCWSTOP directive directly to the underlying /proc//ctl file. If the * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. */ static void * dt_proc_control(void *arg) { dt_proc_control_data_t *datap = arg; dtrace_hdl_t *dtp = datap->dpcd_hdl; dt_proc_t *dpr = datap->dpcd_proc; dt_proc_hash_t *dph = dtp->dt_procs; struct ps_prochandle *P = dpr->dpr_proc; int pid = dpr->dpr_pid; int notify = B_FALSE; /* * We disable the POSIX thread cancellation mechanism so that the * client program using libdtrace can't accidentally cancel our thread. * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. */ (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); /* * Set up the corresponding process for tracing by libdtrace. We want * to be able to catch breakpoints and efficiently single-step over * them, and we need to enable librtld_db to watch libdl activity. */ (void) pthread_mutex_lock(&dpr->dpr_lock); dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ /* * If DT_CLOSE_KILL is set, we created the process; otherwise we * grabbed it. Check for an appropriate stop request and wait for * dt_proc_continue. */ if (dpr->dpr_close == DT_CLOSE_KILL) dt_proc_stop(dpr, DT_PROC_STOP_CREATE); else dt_proc_stop(dpr, DT_PROC_STOP_GRAB); if (Psetrun(P, 0, 0) == -1) { dt_dprintf("pid %d: failed to set running: %s\n", (int)dpr->dpr_pid, strerror(errno)); } (void) pthread_mutex_unlock(&dpr->dpr_lock); /* * Wait for the process corresponding to this control thread to stop, * process the event, and then set it running again. We want to sleep * with dpr_lock *unheld* so that other parts of libdtrace can use the * ps_prochandle in the meantime (e.g. ustack()). To do this, we write * a PCWSTOP directive directly to the underlying /proc//ctl file. * Once the process stops, we wake up, grab dpr_lock, and then call * Pwait() (which will return immediately) and do our processing. */ while (!dpr->dpr_quit) { const lwpstatus_t *psp; /* Wait for the process to report status. */ proc_wstatus(P); if (errno == EINTR) continue; /* check dpr_quit and continue waiting */ (void) pthread_mutex_lock(&dpr->dpr_lock); switch (Pstate(P)) { case PS_STOP: psp = proc_getlwpstatus(P); dt_dprintf("pid %d: proc stopped showing %d/%d\n", pid, psp->pr_why, psp->pr_what); /* * If the process stops showing one of the events that * we are tracing, perform the appropriate response. * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and * PR_JOBCONTROL by design: if one of these conditions * occurs, we will fall through to Psetrun() but the * process will remain stopped in the kernel by the * corresponding mechanism (e.g. job control stop). */ if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) dt_proc_bpmatch(dtp, dpr); else if (psp->pr_why == PR_SYSENTRY && IS_SYS_FORK(psp->pr_what)) dt_proc_bpdisable(dpr); else if (psp->pr_why == PR_SYSEXIT && IS_SYS_FORK(psp->pr_what)) dt_proc_bpenable(dpr); else if (psp->pr_why == PR_SYSEXIT && IS_SYS_EXEC(psp->pr_what)) dt_proc_attach(dpr, B_TRUE); break; case PS_LOST: dt_dprintf("pid %d: proc lost: %s\n", pid, strerror(errno)); dpr->dpr_quit = B_TRUE; notify = B_TRUE; break; case PS_UNDEAD: dt_dprintf("pid %d: proc died\n", pid); dpr->dpr_quit = B_TRUE; notify = B_TRUE; break; } if (Pstate(P) != PS_UNDEAD) { if (dpr->dpr_quit && dpr->dpr_close == DT_CLOSE_KILL) { /* * We're about to kill the child, so don't * bother resuming it. In some cases, such as * an initialization error, we shouldn't have * started it in the first place, so letting it * run could be harmful. */ } else if (Psetrun(P, 0, 0) == -1) { dt_dprintf("pid %d: failed to set running: " "%s\n", (int)dpr->dpr_pid, strerror(errno)); } } (void) pthread_mutex_unlock(&dpr->dpr_lock); } /* * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue * the dt_proc_t structure on the dt_proc_hash_t notification list. */ if (notify) dt_proc_notify(dtp, dph, dpr, NULL); /* * Destroy and remove any remaining breakpoints, set dpr_done and clear * dpr_tid to indicate the control thread has exited, and notify any * waiting thread in dt_proc_destroy() that we have succesfully exited. */ (void) pthread_mutex_lock(&dpr->dpr_lock); dt_proc_bpdestroy(dpr, B_TRUE); dpr->dpr_done = B_TRUE; dpr->dpr_tid = 0; (void) pthread_cond_broadcast(&dpr->dpr_cv); (void) pthread_mutex_unlock(&dpr->dpr_lock); return (NULL); } /*PRINTFLIKE3*/ static struct ps_prochandle * dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) { va_list ap; va_start(ap, format); dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); va_end(ap); if (dpr->dpr_proc != NULL) Prelease(dpr->dpr_proc, 0); dt_free(dtp, dpr); (void) dt_set_errno(dtp, EDT_COMPILER); return (NULL); } dt_proc_t * dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) { dt_proc_hash_t *dph = dtp->dt_procs; pid_t pid = proc_getpid(P); dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { if (dpr->dpr_pid == pid) break; else dpp = &dpr->dpr_hash; } assert(dpr != NULL); assert(dpr->dpr_proc == P); if (remove) *dpp = dpr->dpr_hash; /* remove from pid hash chain */ return (dpr); } static void dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); dt_proc_hash_t *dph = dtp->dt_procs; dt_proc_notify_t *npr, **npp; int rflag; assert(dpr != NULL); switch (dpr->dpr_close) { case DT_CLOSE_KILL: dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid); rflag = PRELEASE_KILL; break; case DT_CLOSE_RUN: dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); rflag = 0; break; } if (dpr->dpr_tid) { /* * Set the dpr_quit flag to tell the daemon thread to exit. We * send it a SIGCANCEL to poke it out of PCWSTOP or any other * long-term /proc system call. Our daemon threads have POSIX * cancellation disabled, so EINTR will be the only effect. We * then wait for dpr_done to indicate the thread has exited. * * We can't use pthread_kill() to send SIGCANCEL because the * interface forbids it and we can't use pthread_cancel() * because with cancellation disabled it won't actually * send SIGCANCEL to the target thread, so we use _lwp_kill() * to do the job. This is all built on evil knowledge of * the details of the cancellation mechanism in libc. */ (void) pthread_mutex_lock(&dpr->dpr_lock); dpr->dpr_quit = B_TRUE; pthread_kill(dpr->dpr_tid, SIGTHR); /* * If the process is currently idling in dt_proc_stop(), re- * enable breakpoints and poke it into running again. */ if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { dt_proc_bpenable(dpr); dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; (void) pthread_cond_broadcast(&dpr->dpr_cv); } while (!dpr->dpr_done) (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); (void) pthread_mutex_unlock(&dpr->dpr_lock); } /* * Before we free the process structure, remove this dt_proc_t from the * lookup hash, and then walk the dt_proc_hash_t's notification list * and remove this dt_proc_t if it is enqueued. */ (void) pthread_mutex_lock(&dph->dph_lock); (void) dt_proc_lookup(dtp, P, B_TRUE); npp = &dph->dph_notify; while ((npr = *npp) != NULL) { if (npr->dprn_dpr == dpr) { *npp = npr->dprn_next; dt_free(dtp, npr); } else { npp = &npr->dprn_next; } } (void) pthread_mutex_unlock(&dph->dph_lock); /* * Remove the dt_proc_list from the LRU list, release the underlying * libproc handle, and free our dt_proc_t data structure. */ if (dpr->dpr_cacheable) { assert(dph->dph_lrucnt != 0); dph->dph_lrucnt--; } dt_list_delete(&dph->dph_lrulist, dpr); Prelease(dpr->dpr_proc, rflag); dt_free(dtp, dpr); } static int dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) { dt_proc_control_data_t data; sigset_t nset, oset; pthread_attr_t a; int err; (void) pthread_mutex_lock(&dpr->dpr_lock); dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ (void) pthread_attr_init(&a); (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); (void) sigfillset(&nset); (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */ data.dpcd_hdl = dtp; data.dpcd_proc = dpr; (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); /* * If the control thread was created, then wait on dpr_cv for either * dpr_done to be set (the victim died or the control thread failed) * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now * stopped by /proc and the control thread is at the rendezvous event. * On success, we return with the process and control thread stopped: * the caller can then apply dt_proc_continue() to resume both. */ if (err == 0) { while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); /* * If dpr_done is set, the control thread aborted before it * reached the rendezvous event. This is either due to PS_LOST * or PS_UNDEAD (i.e. the process died). We try to provide a * small amount of useful information to help figure it out. */ if (dpr->dpr_done) { int stat = proc_getwstat(dpr->dpr_proc); int pid = proc_getpid(dpr->dpr_proc); if (proc_state(dpr->dpr_proc) == PS_LOST) { (void) dt_proc_error(dpr->dpr_hdl, dpr, "failed to control pid %d: process exec'd " "set-id or unobservable program\n", pid); } else if (WIFSIGNALED(stat)) { (void) dt_proc_error(dpr->dpr_hdl, dpr, "failed to control pid %d: process died " "from signal %d\n", pid, WTERMSIG(stat)); } else { (void) dt_proc_error(dpr->dpr_hdl, dpr, "failed to control pid %d: process exited " "with status %d\n", pid, WEXITSTATUS(stat)); } err = ESRCH; /* cause grab() or create() to fail */ } } else { (void) dt_proc_error(dpr->dpr_hdl, dpr, "failed to create control thread for process-id %d: %s\n", (int)dpr->dpr_pid, strerror(err)); } if (err == 0) (void) pthread_mutex_unlock(&dpr->dpr_lock); (void) pthread_attr_destroy(&a); return (err); } struct ps_prochandle * dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, proc_child_func *pcf, void *child_arg) { dt_proc_hash_t *dph = dtp->dt_procs; dt_proc_t *dpr; int err; if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) return (NULL); /* errno is set for us */ (void) pthread_mutex_init(&dpr->dpr_lock, NULL); (void) pthread_cond_init(&dpr->dpr_cv, NULL); if ((err = proc_create(file, argv, dtp->dt_proc_env, pcf, child_arg, &dpr->dpr_proc)) != 0) { return (dt_proc_error(dtp, dpr, "failed to execute %s: %s\n", file, Pcreate_error(err))); } dpr->dpr_hdl = dtp; dpr->dpr_pid = proc_getpid(dpr->dpr_proc); dpr->dpr_close = DT_CLOSE_KILL; if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) return (NULL); /* dt_proc_error() has been called for us */ dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; dt_list_prepend(&dph->dph_lrulist, dpr); dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); dpr->dpr_refs++; return (dpr->dpr_proc); } struct ps_prochandle * dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) { dt_proc_hash_t *dph = dtp->dt_procs; uint_t h = pid & (dph->dph_hashlen - 1); dt_proc_t *dpr, *opr; int err; /* * Search the hash table for the pid. If it is already grabbed or * created, move the handle to the front of the lrulist, increment * the reference count, and return the existing ps_prochandle. */ for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { if (dpr->dpr_pid == pid && !dpr->dpr_stale) { /* * If the cached handle was opened read-only and * this request is for a writeable handle, mark * the cached handle as stale and open a new handle. * Since it's stale, unmark it as cacheable. */ if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { dt_dprintf("upgrading pid %d\n", (int)pid); dpr->dpr_stale = B_TRUE; dpr->dpr_cacheable = B_FALSE; dph->dph_lrucnt--; break; } dt_dprintf("grabbed pid %d (cached)\n", (int)pid); dt_list_delete(&dph->dph_lrulist, dpr); dt_list_prepend(&dph->dph_lrulist, dpr); dpr->dpr_refs++; return (dpr->dpr_proc); } } if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) return (NULL); /* errno is set for us */ (void) pthread_mutex_init(&dpr->dpr_lock, NULL); (void) pthread_cond_init(&dpr->dpr_cv, NULL); if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) { return (dt_proc_error(dtp, dpr, "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); } dpr->dpr_hdl = dtp; dpr->dpr_pid = pid; dpr->dpr_close = DT_CLOSE_RUN; /* * If we are attempting to grab the process without a monitor * thread, then mark the process cacheable only if it's being * grabbed read-only. If we're currently caching more process * handles than dph_lrulim permits, attempt to find the * least-recently-used handle that is currently unreferenced and * release it from the cache. Otherwise we are grabbing the process * for control: create a control thread for this process and store * its ID in dpr->dpr_tid. */ if (nomonitor || (flags & PGRAB_RDONLY)) { if (dph->dph_lrucnt >= dph->dph_lrulim) { for (opr = dt_list_prev(&dph->dph_lrulist); opr != NULL; opr = dt_list_prev(opr)) { if (opr->dpr_cacheable && opr->dpr_refs == 0) { dt_proc_destroy(dtp, opr->dpr_proc); break; } } } if (flags & PGRAB_RDONLY) { dpr->dpr_cacheable = B_TRUE; dpr->dpr_rdonly = B_TRUE; dph->dph_lrucnt++; } } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) return (NULL); /* dt_proc_error() has been called for us */ dpr->dpr_hash = dph->dph_hash[h]; dph->dph_hash[h] = dpr; dt_list_prepend(&dph->dph_lrulist, dpr); dt_dprintf("grabbed pid %d\n", (int)pid); dpr->dpr_refs++; return (dpr->dpr_proc); } void dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); dt_proc_hash_t *dph = dtp->dt_procs; assert(dpr != NULL); assert(dpr->dpr_refs != 0); if (--dpr->dpr_refs == 0 && (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) dt_proc_destroy(dtp, P); } void dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); (void) pthread_mutex_lock(&dpr->dpr_lock); if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; (void) pthread_cond_broadcast(&dpr->dpr_cv); } (void) pthread_mutex_unlock(&dpr->dpr_lock); } void dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); int err = pthread_mutex_lock(&dpr->dpr_lock); assert(err == 0); /* check for recursion */ } void dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); int err = pthread_mutex_unlock(&dpr->dpr_lock); assert(err == 0); /* check for unheld lock */ } void dt_proc_init(dtrace_hdl_t *dtp) { extern char **environ; static char *envdef[] = { "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */ NULL }; char **p; int i; if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL) return; (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; /* * Count how big our environment needs to be. */ for (i = 1, p = environ; *p != NULL; i++, p++) continue; for (p = envdef; *p != NULL; i++, p++) continue; if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL) return; for (i = 0, p = environ; *p != NULL; i++, p++) { if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) goto err; } for (p = envdef; *p != NULL; i++, p++) { if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL) goto err; } return; err: while (--i != 0) { dt_free(dtp, dtp->dt_proc_env[i]); } dt_free(dtp, dtp->dt_proc_env); dtp->dt_proc_env = NULL; } void dt_proc_fini(dtrace_hdl_t *dtp) { dt_proc_hash_t *dph = dtp->dt_procs; dt_proc_t *dpr; char **p; while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) dt_proc_destroy(dtp, dpr->dpr_proc); dtp->dt_procs = NULL; dt_free(dtp, dph); for (p = dtp->dt_proc_env; *p != NULL; p++) dt_free(dtp, *p); dt_free(dtp, dtp->dt_proc_env); dtp->dt_proc_env = NULL; } struct ps_prochandle * dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv, proc_child_func *pcf, void *child_arg) { dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg); if (P != NULL && idp != NULL && idp->di_id == 0) { idp->di_id = proc_getpid(P); /* $target = created pid */ } return (P); } struct ps_prochandle * dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) { dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); if (P != NULL && idp != NULL && idp->di_id == 0) idp->di_id = pid; /* $target = grabbed pid */ return (P); } void dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_release(dtp, P); } void dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) { dt_proc_continue(dtp, P); }