/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef illumos #define GETOPT_EOF EOF #else #include #include #define mergesort(a, b, c, d) lsmergesort(a, b, c, d) #define GETOPT_EOF (-1) typedef uintptr_t pc_t; #endif #define LOCKSTAT_OPTSTR "x:bths:n:d:i:l:f:e:ckwWgCHEATID:RpPo:V" #define LS_MAX_STACK_DEPTH 50 #define LS_MAX_EVENTS 64 typedef struct lsrec { struct lsrec *ls_next; /* next in hash chain */ #ifdef illumos uintptr_t ls_lock; /* lock address */ #else char *ls_lock; /* lock name */ #endif uintptr_t ls_caller; /* caller address */ uint32_t ls_count; /* cumulative event count */ uint32_t ls_event; /* type of event */ uintptr_t ls_refcnt; /* cumulative reference count */ uint64_t ls_time; /* cumulative event duration */ uint32_t ls_hist[64]; /* log2(duration) histogram */ uintptr_t ls_stack[LS_MAX_STACK_DEPTH]; } lsrec_t; typedef struct lsdata { struct lsrec *lsd_next; /* next available */ int lsd_count; /* number of records */ } lsdata_t; /* * Definitions for the types of experiments which can be run. They are * listed in increasing order of memory cost and processing time cost. * The numerical value of each type is the number of bytes needed per record. */ #define LS_BASIC offsetof(lsrec_t, ls_time) #define LS_TIME offsetof(lsrec_t, ls_hist[0]) #define LS_HIST offsetof(lsrec_t, ls_stack[0]) #define LS_STACK(depth) offsetof(lsrec_t, ls_stack[depth]) static void report_stats(FILE *, lsrec_t **, size_t, uint64_t, uint64_t); static void report_trace(FILE *, lsrec_t **); extern int symtab_init(void); extern char *addr_to_sym(uintptr_t, uintptr_t *, size_t *); extern uintptr_t sym_to_addr(char *name); extern size_t sym_size(char *name); extern char *strtok_r(char *, const char *, char **); #define DEFAULT_NRECS 10000 #define DEFAULT_HZ 97 #define MAX_HZ 1000 #define MIN_AGGSIZE (16 * 1024) #define MAX_AGGSIZE (32 * 1024 * 1024) static int g_stkdepth; static int g_topn = INT_MAX; static hrtime_t g_elapsed; static int g_rates = 0; static int g_pflag = 0; static int g_Pflag = 0; static int g_wflag = 0; static int g_Wflag = 0; static int g_cflag = 0; static int g_kflag = 0; static int g_gflag = 0; static int g_Vflag = 0; static int g_tracing = 0; static size_t g_recsize; static size_t g_nrecs; static int g_nrecs_used; static uchar_t g_enabled[LS_MAX_EVENTS]; static hrtime_t g_min_duration[LS_MAX_EVENTS]; static dtrace_hdl_t *g_dtp; static char *g_predicate; static char *g_ipredicate; static char *g_prog; static int g_proglen; static int g_dropped; typedef struct ls_event_info { char ev_type; char ev_lhdr[20]; char ev_desc[80]; char ev_units[10]; char ev_name[DTRACE_NAMELEN]; char *ev_predicate; char *ev_acquire; } ls_event_info_t; static ls_event_info_t g_event_info[LS_MAX_EVENTS] = { { 'C', "Lock", "Adaptive mutex spin", "nsec", "lockstat:::adaptive-spin" }, { 'C', "Lock", "Adaptive mutex block", "nsec", "lockstat:::adaptive-block" }, { 'C', "Lock", "Spin lock spin", "nsec", "lockstat:::spin-spin" }, { 'C', "Lock", "Thread lock spin", "nsec", "lockstat:::thread-spin" }, { 'C', "Lock", "R/W writer blocked by writer", "nsec", "lockstat:::rw-block", "arg2 == 0 && arg3 == 1" }, { 'C', "Lock", "R/W writer blocked by readers", "nsec", "lockstat:::rw-block", "arg2 == 0 && arg3 == 0 && arg4" }, { 'C', "Lock", "R/W reader blocked by writer", "nsec", "lockstat:::rw-block", "arg2 == 1 && arg3 == 1" }, { 'C', "Lock", "R/W reader blocked by write wanted", "nsec", "lockstat:::rw-block", "arg2 == 1 && arg3 == 0 && arg4" }, { 'C', "Lock", "R/W writer spin on writer", "nsec", "lockstat:::rw-spin", "arg2 == 0 && arg3 == 1" }, { 'C', "Lock", "R/W writer spin on readers", "nsec", "lockstat:::rw-spin", "arg2 == 0 && arg3 == 0 && arg4" }, { 'C', "Lock", "R/W reader spin on writer", "nsec", "lockstat:::rw-spin", "arg2 == 1 && arg3 == 1" }, { 'C', "Lock", "R/W reader spin on write wanted", "nsec", "lockstat:::rw-spin", "arg2 == 1 && arg3 == 0 && arg4" }, { 'C', "Lock", "SX exclusive block", "nsec", "lockstat:::sx-block", "arg2 == 0" }, { 'C', "Lock", "SX shared block", "nsec", "lockstat:::sx-block", "arg2 == 1" }, { 'C', "Lock", "SX exclusive spin", "nsec", "lockstat:::sx-spin", "arg2 == 0" }, { 'C', "Lock", "SX shared spin", "nsec", "lockstat:::sx-spin", "arg2 == 1" }, { 'C', "Lock", "lockmgr writer blocked by writer", "nsec", "lockstat:::lockmgr-block", "arg2 == 0 && arg3 == 1" }, { 'C', "Lock", "lockmgr writer blocked by readers", "nsec", "lockstat:::lockmgr-block", "arg2 == 0 && arg3 == 0 && arg4" }, { 'C', "Lock", "lockmgr reader blocked by writer", "nsec", "lockstat:::lockmgr-block", "arg2 == 1 && arg3 == 1" }, { 'C', "Lock", "lockmgr reader blocked by write wanted", "nsec", "lockstat:::lockmgr-block", "arg2 == 1 && arg3 == 0 && arg4" }, { 'C', "Lock", "Unknown event (type 20)", "units" }, { 'C', "Lock", "Unknown event (type 21)", "units" }, { 'C', "Lock", "Unknown event (type 22)", "units" }, { 'C', "Lock", "Unknown event (type 23)", "units" }, { 'C', "Lock", "Unknown event (type 24)", "units" }, { 'C', "Lock", "Unknown event (type 25)", "units" }, { 'C', "Lock", "Unknown event (type 26)", "units" }, { 'C', "Lock", "Unknown event (type 27)", "units" }, { 'C', "Lock", "Unknown event (type 28)", "units" }, { 'C', "Lock", "Unknown event (type 29)", "units" }, { 'C', "Lock", "Unknown event (type 30)", "units" }, { 'C', "Lock", "Unknown event (type 31)", "units" }, { 'H', "Lock", "Adaptive mutex hold", "nsec", "lockstat:::adaptive-release", NULL, "lockstat:::adaptive-acquire" }, { 'H', "Lock", "Spin lock hold", "nsec", "lockstat:::spin-release", NULL, "lockstat:::spin-acquire" }, { 'H', "Lock", "R/W writer hold", "nsec", "lockstat:::rw-release", "arg1 == 0", "lockstat:::rw-acquire" }, { 'H', "Lock", "R/W reader hold", "nsec", "lockstat:::rw-release", "arg1 == 1", "lockstat:::rw-acquire" }, { 'H', "Lock", "SX shared hold", "nsec", "lockstat:::sx-release", "arg1 == 1", "lockstat:::sx-acquire" }, { 'H', "Lock", "SX exclusive hold", "nsec", "lockstat:::sx-release", "arg1 == 0", "lockstat:::sx-acquire" }, { 'H', "Lock", "lockmgr shared hold", "nsec", "lockstat:::lockmgr-release", "arg1 == 1", "lockstat:::lockmgr-acquire" }, { 'H', "Lock", "lockmgr exclusive hold", "nsec", "lockstat:::lockmgr-release,lockstat:::lockmgr-disown", "arg1 == 0", "lockstat:::lockmgr-acquire" }, { 'H', "Lock", "Unknown event (type 40)", "units" }, { 'H', "Lock", "Unknown event (type 41)", "units" }, { 'H', "Lock", "Unknown event (type 42)", "units" }, { 'H', "Lock", "Unknown event (type 43)", "units" }, { 'H', "Lock", "Unknown event (type 44)", "units" }, { 'H', "Lock", "Unknown event (type 45)", "units" }, { 'H', "Lock", "Unknown event (type 46)", "units" }, { 'H', "Lock", "Unknown event (type 47)", "units" }, { 'H', "Lock", "Unknown event (type 48)", "units" }, { 'H', "Lock", "Unknown event (type 49)", "units" }, { 'H', "Lock", "Unknown event (type 50)", "units" }, { 'H', "Lock", "Unknown event (type 51)", "units" }, { 'H', "Lock", "Unknown event (type 52)", "units" }, { 'H', "Lock", "Unknown event (type 53)", "units" }, { 'H', "Lock", "Unknown event (type 54)", "units" }, { 'H', "Lock", "Unknown event (type 55)", "units" }, #ifdef illumos { 'I', "CPU+PIL", "Profiling interrupt", "nsec", #else { 'I', "CPU+Pri_Class", "Profiling interrupt", "nsec", #endif "profile:::profile-97", NULL }, { 'I', "Lock", "Unknown event (type 57)", "units" }, { 'I', "Lock", "Unknown event (type 58)", "units" }, { 'I', "Lock", "Unknown event (type 59)", "units" }, { 'E', "Lock", "Recursive lock entry detected", "(N/A)", "lockstat:::rw-release", NULL, "lockstat:::rw-acquire" }, { 'E', "Lock", "Lockstat enter failure", "(N/A)" }, { 'E', "Lock", "Lockstat exit failure", "nsec" }, { 'E', "Lock", "Lockstat record failure", "(N/A)" }, }; #ifndef illumos static char *g_pri_class[] = { "", "Intr", "RealT", "TShar", "Idle" }; #endif static void fail(int do_perror, const char *message, ...) { va_list args; int save_errno = errno; va_start(args, message); (void) fprintf(stderr, "lockstat: "); (void) vfprintf(stderr, message, args); va_end(args); if (do_perror) (void) fprintf(stderr, ": %s", strerror(save_errno)); (void) fprintf(stderr, "\n"); exit(2); } static void dfail(const char *message, ...) { va_list args; va_start(args, message); (void) fprintf(stderr, "lockstat: "); (void) vfprintf(stderr, message, args); va_end(args); (void) fprintf(stderr, ": %s\n", dtrace_errmsg(g_dtp, dtrace_errno(g_dtp))); exit(2); } static void show_events(char event_type, char *desc) { int i, first = -1, last; for (i = 0; i < LS_MAX_EVENTS; i++) { ls_event_info_t *evp = &g_event_info[i]; if (evp->ev_type != event_type || strncmp(evp->ev_desc, "Unknown event", 13) == 0) continue; if (first == -1) first = i; last = i; } (void) fprintf(stderr, "\n%s events (lockstat -%c or lockstat -e %d-%d):\n\n", desc, event_type, first, last); for (i = first; i <= last; i++) (void) fprintf(stderr, "%4d = %s\n", i, g_event_info[i].ev_desc); } static void usage(void) { (void) fprintf(stderr, "Usage: lockstat [options] command [args]\n" "\nGeneral options:\n\n" " -V print the corresponding D program\n" "\nEvent selection options:\n\n" " -C watch contention events [on by default]\n" " -E watch error events [off by default]\n" " -H watch hold events [off by default]\n" " -I watch interrupt events [off by default]\n" " -A watch all lock events [equivalent to -CH]\n" " -e event_list only watch the specified events (shown below);\n" " is a comma-separated list of\n" " events or ranges of events, e.g. 1,4-7,35\n" " -i rate interrupt rate for -I [default: %d Hz]\n" "\nData gathering options:\n\n" " -b basic statistics (lock, caller, event count)\n" " -t timing for all events [default]\n" " -h histograms for event times\n" " -s depth stack traces deep\n" " -x opt[=val] enable or modify DTrace options\n" "\nData filtering options:\n\n" " -n nrecords maximum number of data records [default: %d]\n" " -l lock[,size] only watch , which can be specified as a\n" " symbolic name or hex address; defaults\n" " to the ELF symbol size if available, 1 if not\n" " -f func[,size] only watch events generated by \n" " -d duration only watch events longer than \n" " -T trace (rather than sample) events\n" "\nData reporting options:\n\n" #ifdef illumos " -c coalesce lock data for arrays like pse_mutex[]\n" #endif " -k coalesce PCs within functions\n" " -g show total events generated by function\n" " -w wherever: don't distinguish events by caller\n" " -W whichever: don't distinguish events by lock\n" " -R display rates rather than counts\n" " -p parsable output format (awk(1)-friendly)\n" " -P sort lock data by (count * avg_time) product\n" " -D n only display top events of each type\n" " -o filename send output to \n", DEFAULT_HZ, DEFAULT_NRECS); show_events('C', "Contention"); show_events('H', "Hold-time"); show_events('I', "Interrupt"); show_events('E', "Error"); (void) fprintf(stderr, "\n"); exit(1); } static int lockcmp(lsrec_t *a, lsrec_t *b) { int i; if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); for (i = g_stkdepth - 1; i >= 0; i--) { if (a->ls_stack[i] < b->ls_stack[i]) return (-1); if (a->ls_stack[i] > b->ls_stack[i]) return (1); } if (a->ls_caller < b->ls_caller) return (-1); if (a->ls_caller > b->ls_caller) return (1); #ifdef illumos if (a->ls_lock < b->ls_lock) return (-1); if (a->ls_lock > b->ls_lock) return (1); return (0); #else return (strcmp(a->ls_lock, b->ls_lock)); #endif } static int countcmp(lsrec_t *a, lsrec_t *b) { if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); return (b->ls_count - a->ls_count); } static int timecmp(lsrec_t *a, lsrec_t *b) { if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); if (a->ls_time < b->ls_time) return (1); if (a->ls_time > b->ls_time) return (-1); return (0); } static int lockcmp_anywhere(lsrec_t *a, lsrec_t *b) { if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); #ifdef illumos if (a->ls_lock < b->ls_lock) return (-1); if (a->ls_lock > b->ls_lock) return (1); return (0); #else return (strcmp(a->ls_lock, b->ls_lock)); #endif } static int lock_and_count_cmp_anywhere(lsrec_t *a, lsrec_t *b) { #ifndef illumos int cmp; #endif if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); #ifdef illumos if (a->ls_lock < b->ls_lock) return (-1); if (a->ls_lock > b->ls_lock) return (1); #else cmp = strcmp(a->ls_lock, b->ls_lock); if (cmp != 0) return (cmp); #endif return (b->ls_count - a->ls_count); } static int sitecmp_anylock(lsrec_t *a, lsrec_t *b) { int i; if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); for (i = g_stkdepth - 1; i >= 0; i--) { if (a->ls_stack[i] < b->ls_stack[i]) return (-1); if (a->ls_stack[i] > b->ls_stack[i]) return (1); } if (a->ls_caller < b->ls_caller) return (-1); if (a->ls_caller > b->ls_caller) return (1); return (0); } static int site_and_count_cmp_anylock(lsrec_t *a, lsrec_t *b) { int i; if (a->ls_event < b->ls_event) return (-1); if (a->ls_event > b->ls_event) return (1); for (i = g_stkdepth - 1; i >= 0; i--) { if (a->ls_stack[i] < b->ls_stack[i]) return (-1); if (a->ls_stack[i] > b->ls_stack[i]) return (1); } if (a->ls_caller < b->ls_caller) return (-1); if (a->ls_caller > b->ls_caller) return (1); return (b->ls_count - a->ls_count); } static void lsmergesort(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **a, lsrec_t **b, int n) { int m = n / 2; int i, j; if (m > 1) lsmergesort(cmp, a, b, m); if (n - m > 1) lsmergesort(cmp, a + m, b + m, n - m); for (i = m; i > 0; i--) b[i - 1] = a[i - 1]; for (j = m - 1; j < n - 1; j++) b[n + m - j - 2] = a[j + 1]; while (i < j) *a++ = cmp(b[i], b[j]) < 0 ? b[i++] : b[j--]; *a = b[i]; } static void coalesce(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **lock, int n) { int i, j; lsrec_t *target, *current; target = lock[0]; for (i = 1; i < n; i++) { current = lock[i]; if (cmp(current, target) != 0) { target = current; continue; } current->ls_event = LS_MAX_EVENTS; target->ls_count += current->ls_count; target->ls_refcnt += current->ls_refcnt; if (g_recsize < LS_TIME) continue; target->ls_time += current->ls_time; if (g_recsize < LS_HIST) continue; for (j = 0; j < 64; j++) target->ls_hist[j] += current->ls_hist[j]; } } static void coalesce_symbol(uintptr_t *addrp) { uintptr_t symoff; size_t symsize; if (addr_to_sym(*addrp, &symoff, &symsize) != NULL && symoff < symsize) *addrp -= symoff; } static void predicate_add(char **pred, char *what, char *cmp, uintptr_t value) { char *new; int len, newlen; if (what == NULL) return; if (*pred == NULL) { *pred = malloc(1); *pred[0] = '\0'; } len = strlen(*pred); newlen = len + strlen(what) + 32 + strlen("( && )"); new = malloc(newlen); if (*pred[0] != '\0') { if (cmp != NULL) { (void) sprintf(new, "(%s) && (%s %s %p)", *pred, what, cmp, (void *)value); } else { (void) sprintf(new, "(%s) && (%s)", *pred, what); } } else { if (cmp != NULL) { (void) sprintf(new, "%s %s %p", what, cmp, (void *)value); } else { (void) sprintf(new, "%s", what); } } free(*pred); *pred = new; } static void predicate_destroy(char **pred) { free(*pred); *pred = NULL; } static void filter_add(char **filt, char *what, uintptr_t base, size_t size) { char buf[256], *c = buf, *new; int len, newlen; if (*filt == NULL) { *filt = malloc(1); *filt[0] = '\0'; } #ifdef illumos (void) sprintf(c, "%s(%s >= 0x%p && %s < 0x%p)", *filt[0] != '\0' ? " || " : "", what, (void *)base, what, (void *)(base + size)); #else (void) sprintf(c, "%s(%s >= %p && %s < %p)", *filt[0] != '\0' ? " || " : "", what, (void *)base, what, (void *)(base + size)); #endif newlen = (len = strlen(*filt) + 1) + strlen(c); new = malloc(newlen); bcopy(*filt, new, len); (void) strcat(new, c); free(*filt); *filt = new; } static void filter_destroy(char **filt) { free(*filt); *filt = NULL; } static void dprog_add(const char *fmt, ...) { va_list args; int size, offs; char c; va_start(args, fmt); size = vsnprintf(&c, 1, fmt, args) + 1; va_end(args); if (g_proglen == 0) { offs = 0; } else { offs = g_proglen - 1; } g_proglen = offs + size; if ((g_prog = realloc(g_prog, g_proglen)) == NULL) fail(1, "failed to reallocate program text"); va_start(args, fmt); (void) vsnprintf(&g_prog[offs], size, fmt, args); va_end(args); } /* * This function may read like an open sewer, but keep in mind that programs * that generate other programs are rarely pretty. If one has the unenviable * task of maintaining or -- worse -- extending this code, use the -V option * to examine the D program as generated by this function. */ static void dprog_addevent(int event) { ls_event_info_t *info = &g_event_info[event]; char *pred = NULL; char stack[20]; const char *arg0, *caller; char *arg1 = "arg1"; char buf[80]; hrtime_t dur; int depth; if (info->ev_name[0] == '\0') return; if (info->ev_type == 'I') { /* * For interrupt events, arg0 (normally the lock pointer) is * the CPU address plus the current pil, and arg1 (normally * the number of nanoseconds) is the number of nanoseconds * late -- and it's stored in arg2. */ #ifdef illumos arg0 = "(uintptr_t)curthread->t_cpu + \n" "\t curthread->t_cpu->cpu_profile_pil"; #else arg0 = "(uintptr_t)(curthread->td_oncpu << 16) + \n" "\t 0x01000000 + curthread->td_pri_class"; #endif caller = "(uintptr_t)arg0"; arg1 = "arg2"; } else { #ifdef illumos arg0 = "(uintptr_t)arg0"; #else arg0 = "stringof(args[0]->lock_object.lo_name)"; #endif caller = "caller"; } if (g_recsize > LS_HIST) { for (depth = 0; g_recsize > LS_STACK(depth); depth++) continue; if (g_tracing) { (void) sprintf(stack, "\tstack(%d);\n", depth); } else { (void) sprintf(stack, ", stack(%d)", depth); } } else { (void) sprintf(stack, ""); } if (info->ev_acquire != NULL) { /* * If this is a hold event, we need to generate an additional * clause for the acquire; the clause for the release will be * generated with the aggregating statement, below. */ dprog_add("%s\n", info->ev_acquire); predicate_add(&pred, info->ev_predicate, NULL, 0); predicate_add(&pred, g_predicate, NULL, 0); if (pred != NULL) dprog_add("/%s/\n", pred); dprog_add("{\n"); (void) sprintf(buf, "self->ev%d[(uintptr_t)arg0]", event); if (info->ev_type == 'H') { dprog_add("\t%s = timestamp;\n", buf); } else { /* * If this isn't a hold event, it's the recursive * error event. For this, we simply bump the * thread-local, per-lock count. */ dprog_add("\t%s++;\n", buf); } dprog_add("}\n\n"); predicate_destroy(&pred); pred = NULL; if (info->ev_type == 'E') { /* * If this is the recursive lock error event, we need * to generate an additional clause to decrement the * thread-local, per-lock count. This assures that we * only execute the aggregating clause if we have * recursive entry. */ dprog_add("%s\n", info->ev_name); dprog_add("/%s/\n{\n\t%s--;\n}\n\n", buf, buf); } predicate_add(&pred, buf, NULL, 0); if (info->ev_type == 'H') { (void) sprintf(buf, "timestamp -\n\t " "self->ev%d[(uintptr_t)arg0]", event); } arg1 = buf; } else { predicate_add(&pred, info->ev_predicate, NULL, 0); if (info->ev_type != 'I') predicate_add(&pred, g_predicate, NULL, 0); else predicate_add(&pred, g_ipredicate, NULL, 0); } if ((dur = g_min_duration[event]) != 0) predicate_add(&pred, arg1, ">=", dur); dprog_add("%s\n", info->ev_name); if (pred != NULL) dprog_add("/%s/\n", pred); predicate_destroy(&pred); dprog_add("{\n"); if (g_tracing) { dprog_add("\ttrace(%dULL);\n", event); dprog_add("\ttrace(%s);\n", arg0); dprog_add("\ttrace(%s);\n", caller); dprog_add(stack); } else { /* * The ordering here is important: when we process the * aggregate, we count on the fact that @avg appears before * @hist in program order to assure that @avg is assigned the * first aggregation variable ID and @hist assigned the * second; see the comment in process_aggregate() for details. */ dprog_add("\t@avg[%dULL, %s, %s%s] = avg(%s);\n", event, arg0, caller, stack, arg1); if (g_recsize >= LS_HIST) { dprog_add("\t@hist[%dULL, %s, %s%s] = quantize" "(%s);\n", event, arg0, caller, stack, arg1); } } if (info->ev_acquire != NULL) dprog_add("\tself->ev%d[arg0] = 0;\n", event); dprog_add("}\n\n"); } static void dprog_compile() { dtrace_prog_t *prog; dtrace_proginfo_t info; if (g_Vflag) { (void) fprintf(stderr, "lockstat: vvvv D program vvvv\n"); (void) fputs(g_prog, stderr); (void) fprintf(stderr, "lockstat: ^^^^ D program ^^^^\n"); } if ((prog = dtrace_program_strcompile(g_dtp, g_prog, DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL) dfail("failed to compile program"); if (dtrace_program_exec(g_dtp, prog, &info) == -1) dfail("failed to enable probes"); if (dtrace_go(g_dtp) != 0) dfail("couldn't start tracing"); } static void #ifdef illumos status_fire(void) #else status_fire(int i) #endif {} static void status_init(void) { dtrace_optval_t val, status, agg; struct sigaction act; struct itimerspec ts; struct sigevent ev; timer_t tid; if (dtrace_getopt(g_dtp, "statusrate", &status) == -1) dfail("failed to get 'statusrate'"); if (dtrace_getopt(g_dtp, "aggrate", &agg) == -1) dfail("failed to get 'statusrate'"); /* * We would want to awaken at a rate that is the GCD of the statusrate * and the aggrate -- but that seems a bit absurd. Instead, we'll * simply awaken at a rate that is the more frequent of the two, which * assures that we're never later than the interval implied by the * more frequent rate. */ val = status < agg ? status : agg; (void) sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = status_fire; (void) sigaction(SIGUSR1, &act, NULL); ev.sigev_notify = SIGEV_SIGNAL; ev.sigev_signo = SIGUSR1; if (timer_create(CLOCK_REALTIME, &ev, &tid) == -1) dfail("cannot create CLOCK_REALTIME timer"); ts.it_value.tv_sec = val / NANOSEC; ts.it_value.tv_nsec = val % NANOSEC; ts.it_interval = ts.it_value; if (timer_settime(tid, TIMER_RELTIME, &ts, NULL) == -1) dfail("cannot set time on CLOCK_REALTIME timer"); } static void status_check(void) { if (!g_tracing && dtrace_aggregate_snap(g_dtp) != 0) dfail("failed to snap aggregate"); if (dtrace_status(g_dtp) == -1) dfail("dtrace_status()"); } static void lsrec_fill(lsrec_t *lsrec, const dtrace_recdesc_t *rec, int nrecs, caddr_t data) { bzero(lsrec, g_recsize); lsrec->ls_count = 1; if ((g_recsize > LS_HIST && nrecs < 4) || (nrecs < 3)) fail(0, "truncated DTrace record"); if (rec->dtrd_size != sizeof (uint64_t)) fail(0, "bad event size in first record"); /* LINTED - alignment */ lsrec->ls_event = (uint32_t)*((uint64_t *)(data + rec->dtrd_offset)); rec++; #ifdef illumos if (rec->dtrd_size != sizeof (uintptr_t)) fail(0, "bad lock address size in second record"); /* LINTED - alignment */ lsrec->ls_lock = *((uintptr_t *)(data + rec->dtrd_offset)); rec++; #else lsrec->ls_lock = strdup((const char *)(data + rec->dtrd_offset)); rec++; #endif if (rec->dtrd_size != sizeof (uintptr_t)) fail(0, "bad caller size in third record"); /* LINTED - alignment */ lsrec->ls_caller = *((uintptr_t *)(data + rec->dtrd_offset)); rec++; if (g_recsize > LS_HIST) { int frames, i; pc_t *stack; frames = rec->dtrd_size / sizeof (pc_t); /* LINTED - alignment */ stack = (pc_t *)(data + rec->dtrd_offset); for (i = 1; i < frames; i++) lsrec->ls_stack[i - 1] = stack[i]; } } /*ARGSUSED*/ static int count_aggregate(const dtrace_aggdata_t *agg, void *arg) { *((size_t *)arg) += 1; return (DTRACE_AGGWALK_NEXT); } static int process_aggregate(const dtrace_aggdata_t *agg, void *arg) { const dtrace_aggdesc_t *aggdesc = agg->dtada_desc; caddr_t data = agg->dtada_data; lsdata_t *lsdata = arg; lsrec_t *lsrec = lsdata->lsd_next; const dtrace_recdesc_t *rec; uint64_t *avg, *quantized; int i, j; assert(lsdata->lsd_count < g_nrecs); /* * Aggregation variable IDs are guaranteed to be generated in program * order, and they are guaranteed to start from DTRACE_AGGVARIDNONE * plus one. As "avg" appears before "hist" in program order, we know * that "avg" will be allocated the first aggregation variable ID, and * "hist" will be allocated the second aggregation variable ID -- and * we therefore use the aggregation variable ID to differentiate the * cases. */ if (aggdesc->dtagd_varid > DTRACE_AGGVARIDNONE + 1) { /* * If this is the histogram entry. We'll copy the quantized * data into lc_hist, and jump over the rest. */ rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; if (aggdesc->dtagd_varid != DTRACE_AGGVARIDNONE + 2) fail(0, "bad variable ID in aggregation record"); if (rec->dtrd_size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) fail(0, "bad quantize size in aggregation record"); /* LINTED - alignment */ quantized = (uint64_t *)(data + rec->dtrd_offset); for (i = DTRACE_QUANTIZE_ZEROBUCKET, j = 0; i < DTRACE_QUANTIZE_NBUCKETS; i++, j++) lsrec->ls_hist[j] = quantized[i]; goto out; } lsrec_fill(lsrec, &aggdesc->dtagd_rec[1], aggdesc->dtagd_nrecs - 1, data); rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; if (rec->dtrd_size != 2 * sizeof (uint64_t)) fail(0, "bad avg size in aggregation record"); /* LINTED - alignment */ avg = (uint64_t *)(data + rec->dtrd_offset); lsrec->ls_count = (uint32_t)avg[0]; lsrec->ls_time = (uintptr_t)avg[1]; if (g_recsize >= LS_HIST) return (DTRACE_AGGWALK_NEXT); out: lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize); lsdata->lsd_count++; return (DTRACE_AGGWALK_NEXT); } static int process_trace(const dtrace_probedata_t *pdata, void *arg) { lsdata_t *lsdata = arg; lsrec_t *lsrec = lsdata->lsd_next; dtrace_eprobedesc_t *edesc = pdata->dtpda_edesc; caddr_t data = pdata->dtpda_data; if (lsdata->lsd_count >= g_nrecs) return (DTRACE_CONSUME_NEXT); lsrec_fill(lsrec, edesc->dtepd_rec, edesc->dtepd_nrecs, data); lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize); lsdata->lsd_count++; return (DTRACE_CONSUME_NEXT); } static int process_data(FILE *out, char *data) { lsdata_t lsdata; /* LINTED - alignment */ lsdata.lsd_next = (lsrec_t *)data; lsdata.lsd_count = 0; if (g_tracing) { if (dtrace_consume(g_dtp, out, process_trace, NULL, &lsdata) != 0) dfail("failed to consume buffer"); return (lsdata.lsd_count); } if (dtrace_aggregate_walk_keyvarsorted(g_dtp, process_aggregate, &lsdata) != 0) dfail("failed to walk aggregate"); return (lsdata.lsd_count); } /*ARGSUSED*/ static int drophandler(const dtrace_dropdata_t *data, void *arg) { g_dropped++; (void) fprintf(stderr, "lockstat: warning: %s", data->dtdda_msg); return (DTRACE_HANDLE_OK); } int main(int argc, char **argv) { char *data_buf; lsrec_t *lsp, **current, **first, **sort_buf, **merge_buf; FILE *out = stdout; int c; pid_t child; int status; int i, j; hrtime_t duration; char *addrp, *offp, *sizep, *evp, *lastp, *p; uintptr_t addr; size_t size, off; int events_specified = 0; int exec_errno = 0; uint32_t event; char *filt = NULL, *ifilt = NULL; static uint64_t ev_count[LS_MAX_EVENTS + 1]; static uint64_t ev_time[LS_MAX_EVENTS + 1]; dtrace_optval_t aggsize; char aggstr[10]; long ncpus; int dynvar = 0; int err; if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL) { fail(0, "cannot open dtrace library: %s", dtrace_errmsg(NULL, err)); } if (dtrace_handle_drop(g_dtp, &drophandler, NULL) == -1) dfail("couldn't establish drop handler"); if (symtab_init() == -1) fail(1, "can't load kernel symbols"); g_nrecs = DEFAULT_NRECS; while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != GETOPT_EOF) { switch (c) { case 'b': g_recsize = LS_BASIC; break; case 't': g_recsize = LS_TIME; break; case 'h': g_recsize = LS_HIST; break; case 's': if (!isdigit(optarg[0])) usage(); g_stkdepth = atoi(optarg); if (g_stkdepth > LS_MAX_STACK_DEPTH) fail(0, "max stack depth is %d", LS_MAX_STACK_DEPTH); g_recsize = LS_STACK(g_stkdepth); break; case 'n': if (!isdigit(optarg[0])) usage(); g_nrecs = atoi(optarg); break; case 'd': if (!isdigit(optarg[0])) usage(); duration = atoll(optarg); /* * XXX -- durations really should be per event * since the units are different, but it's hard * to express this nicely in the interface. * Not clear yet what the cleanest solution is. */ for (i = 0; i < LS_MAX_EVENTS; i++) if (g_event_info[i].ev_type != 'E') g_min_duration[i] = duration; break; case 'i': if (!isdigit(optarg[0])) usage(); i = atoi(optarg); if (i <= 0) usage(); if (i > MAX_HZ) fail(0, "max interrupt rate is %d Hz", MAX_HZ); for (j = 0; j < LS_MAX_EVENTS; j++) if (strcmp(g_event_info[j].ev_desc, "Profiling interrupt") == 0) break; (void) sprintf(g_event_info[j].ev_name, "profile:::profile-%d", i); break; case 'l': case 'f': addrp = strtok(optarg, ","); sizep = strtok(NULL, ","); addrp = strtok(optarg, ",+"); offp = strtok(NULL, ","); size = sizep ? strtoul(sizep, NULL, 0) : 1; off = offp ? strtoul(offp, NULL, 0) : 0; if (addrp[0] == '0') { addr = strtoul(addrp, NULL, 16) + off; } else { addr = sym_to_addr(addrp) + off; if (sizep == NULL) size = sym_size(addrp) - off; if (addr - off == 0) fail(0, "symbol '%s' not found", addrp); if (size == 0) size = 1; } if (c == 'l') { filter_add(&filt, "arg0", addr, size); } else { filter_add(&filt, "caller", addr, size); filter_add(&ifilt, "arg0", addr, size); } break; case 'e': evp = strtok_r(optarg, ",", &lastp); while (evp) { int ev1, ev2; char *evp2; (void) strtok(evp, "-"); evp2 = strtok(NULL, "-"); ev1 = atoi(evp); ev2 = evp2 ? atoi(evp2) : ev1; if ((uint_t)ev1 >= LS_MAX_EVENTS || (uint_t)ev2 >= LS_MAX_EVENTS || ev1 > ev2) fail(0, "-e events out of range"); for (i = ev1; i <= ev2; i++) g_enabled[i] = 1; evp = strtok_r(NULL, ",", &lastp); } events_specified = 1; break; #ifdef illumos case 'c': g_cflag = 1; break; #endif case 'k': g_kflag = 1; break; case 'w': g_wflag = 1; break; case 'W': g_Wflag = 1; break; case 'g': g_gflag = 1; break; case 'C': case 'E': case 'H': case 'I': for (i = 0; i < LS_MAX_EVENTS; i++) if (g_event_info[i].ev_type == c) g_enabled[i] = 1; events_specified = 1; break; case 'A': for (i = 0; i < LS_MAX_EVENTS; i++) if (strchr("CH", g_event_info[i].ev_type)) g_enabled[i] = 1; events_specified = 1; break; case 'T': g_tracing = 1; break; case 'D': if (!isdigit(optarg[0])) usage(); g_topn = atoi(optarg); break; case 'R': g_rates = 1; break; case 'p': g_pflag = 1; break; case 'P': g_Pflag = 1; break; case 'o': if ((out = fopen(optarg, "w")) == NULL) fail(1, "error opening file"); break; case 'V': g_Vflag = 1; break; default: if (strchr(LOCKSTAT_OPTSTR, c) == NULL) usage(); } } if (filt != NULL) { predicate_add(&g_predicate, filt, NULL, 0); filter_destroy(&filt); } if (ifilt != NULL) { predicate_add(&g_ipredicate, ifilt, NULL, 0); filter_destroy(&ifilt); } if (g_recsize == 0) { if (g_gflag) { g_stkdepth = LS_MAX_STACK_DEPTH; g_recsize = LS_STACK(g_stkdepth); } else { g_recsize = LS_TIME; } } if (g_gflag && g_recsize <= LS_STACK(0)) fail(0, "'-g' requires at least '-s 1' data gathering"); /* * Make sure the alignment is reasonable */ g_recsize = -(-g_recsize & -sizeof (uint64_t)); for (i = 0; i < LS_MAX_EVENTS; i++) { /* * If no events were specified, enable -C. */ if (!events_specified && g_event_info[i].ev_type == 'C') g_enabled[i] = 1; } for (i = 0; i < LS_MAX_EVENTS; i++) { if (!g_enabled[i]) continue; if (g_event_info[i].ev_acquire != NULL) { /* * If we've enabled a hold event, we must explicitly * allocate dynamic variable space. */ dynvar = 1; } dprog_addevent(i); } /* * Make sure there are remaining arguments to specify a child command * to execute. */ if (argc <= optind) usage(); if ((ncpus = sysconf(_SC_NPROCESSORS_ONLN)) == -1) dfail("couldn't determine number of online CPUs"); /* * By default, we set our data buffer size to be the number of records * multiplied by the size of the record, doubled to account for some * DTrace slop and divided by the number of CPUs. We silently clamp * the aggregation size at both a minimum and a maximum to prevent * absurdly low or high values. */ if ((aggsize = (g_nrecs * g_recsize * 2) / ncpus) < MIN_AGGSIZE) aggsize = MIN_AGGSIZE; if (aggsize > MAX_AGGSIZE) aggsize = MAX_AGGSIZE; (void) sprintf(aggstr, "%lld", (long long)aggsize); if (!g_tracing) { if (dtrace_setopt(g_dtp, "bufsize", "4k") == -1) dfail("failed to set 'bufsize'"); if (dtrace_setopt(g_dtp, "aggsize", aggstr) == -1) dfail("failed to set 'aggsize'"); if (dynvar) { /* * If we're using dynamic variables, we set our * dynamic variable size to be one megabyte per CPU, * with a hard-limit of 32 megabytes. This may still * be too small in some cases, but it can be tuned * manually via -x if need be. */ (void) sprintf(aggstr, "%ldm", ncpus < 32 ? ncpus : 32); if (dtrace_setopt(g_dtp, "dynvarsize", aggstr) == -1) dfail("failed to set 'dynvarsize'"); } } else { if (dtrace_setopt(g_dtp, "bufsize", aggstr) == -1) dfail("failed to set 'bufsize'"); } if (dtrace_setopt(g_dtp, "statusrate", "10sec") == -1) dfail("failed to set 'statusrate'"); optind = 1; while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != GETOPT_EOF) { switch (c) { case 'x': if ((p = strchr(optarg, '=')) != NULL) *p++ = '\0'; if (dtrace_setopt(g_dtp, optarg, p) != 0) dfail("failed to set -x %s", optarg); break; } } argc -= optind; argv += optind; dprog_compile(); status_init(); g_elapsed = -gethrtime(); /* * Spawn the specified command and wait for it to complete. */ child = fork(); if (child == -1) fail(1, "cannot fork"); if (child == 0) { (void) dtrace_close(g_dtp); (void) execvp(argv[0], &argv[0]); exec_errno = errno; exit(127); } #ifdef illumos while (waitpid(child, &status, WEXITED) != child) #else while (waitpid(child, &status, 0) != child) #endif status_check(); g_elapsed += gethrtime(); if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { if (exec_errno != 0) { errno = exec_errno; fail(1, "could not execute %s", argv[0]); } (void) fprintf(stderr, "lockstat: warning: %s exited with code %d\n", argv[0], WEXITSTATUS(status)); } } else { (void) fprintf(stderr, "lockstat: warning: %s died on signal %d\n", argv[0], WTERMSIG(status)); } if (dtrace_stop(g_dtp) == -1) dfail("failed to stop dtrace"); /* * Before we read out the results, we need to allocate our buffer. * If we're tracing, then we'll just use the precalculated size. If * we're not, then we'll take a snapshot of the aggregate, and walk * it to count the number of records. */ if (!g_tracing) { if (dtrace_aggregate_snap(g_dtp) != 0) dfail("failed to snap aggregate"); g_nrecs = 0; if (dtrace_aggregate_walk(g_dtp, count_aggregate, &g_nrecs) != 0) dfail("failed to walk aggregate"); } #ifdef illumos if ((data_buf = memalign(sizeof (uint64_t), (g_nrecs + 1) * g_recsize)) == NULL) #else if (posix_memalign((void **)&data_buf, sizeof (uint64_t), (g_nrecs + 1) * g_recsize) ) #endif fail(1, "Memory allocation failed"); /* * Read out the DTrace data. */ g_nrecs_used = process_data(out, data_buf); if (g_nrecs_used > g_nrecs || g_dropped) (void) fprintf(stderr, "lockstat: warning: " "ran out of data records (use -n for more)\n"); /* LINTED - alignment */ for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, /* LINTED - alignment */ lsp = (lsrec_t *)((char *)lsp + g_recsize)) { ev_count[lsp->ls_event] += lsp->ls_count; ev_time[lsp->ls_event] += lsp->ls_time; } /* * If -g was specified, convert stacks into individual records. */ if (g_gflag) { lsrec_t *newlsp, *oldlsp; #ifdef illumos newlsp = memalign(sizeof (uint64_t), g_nrecs_used * LS_TIME * (g_stkdepth + 1)); #else posix_memalign((void **)&newlsp, sizeof (uint64_t), g_nrecs_used * LS_TIME * (g_stkdepth + 1)); #endif if (newlsp == NULL) fail(1, "Cannot allocate space for -g processing"); lsp = newlsp; /* LINTED - alignment */ for (i = 0, oldlsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, /* LINTED - alignment */ oldlsp = (lsrec_t *)((char *)oldlsp + g_recsize)) { int fr; int caller_in_stack = 0; if (oldlsp->ls_count == 0) continue; for (fr = 0; fr < g_stkdepth; fr++) { if (oldlsp->ls_stack[fr] == 0) break; if (oldlsp->ls_stack[fr] == oldlsp->ls_caller) caller_in_stack = 1; bcopy(oldlsp, lsp, LS_TIME); lsp->ls_caller = oldlsp->ls_stack[fr]; #ifndef illumos lsp->ls_lock = strdup(oldlsp->ls_lock); #endif /* LINTED - alignment */ lsp = (lsrec_t *)((char *)lsp + LS_TIME); } if (!caller_in_stack) { bcopy(oldlsp, lsp, LS_TIME); /* LINTED - alignment */ lsp = (lsrec_t *)((char *)lsp + LS_TIME); } #ifndef illumos free(oldlsp->ls_lock); #endif } g_nrecs = g_nrecs_used = ((uintptr_t)lsp - (uintptr_t)newlsp) / LS_TIME; g_recsize = LS_TIME; g_stkdepth = 0; free(data_buf); data_buf = (char *)newlsp; } if ((sort_buf = calloc(2 * (g_nrecs + 1), sizeof (void *))) == NULL) fail(1, "Sort buffer allocation failed"); merge_buf = sort_buf + (g_nrecs + 1); /* * Build the sort buffer, discarding zero-count records along the way. */ /* LINTED - alignment */ for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, /* LINTED - alignment */ lsp = (lsrec_t *)((char *)lsp + g_recsize)) { if (lsp->ls_count == 0) lsp->ls_event = LS_MAX_EVENTS; sort_buf[i] = lsp; } if (g_nrecs_used == 0) exit(0); /* * Add a sentinel after the last record */ sort_buf[i] = lsp; lsp->ls_event = LS_MAX_EVENTS; if (g_tracing) { report_trace(out, sort_buf); return (0); } /* * Application of -g may have resulted in multiple records * with the same signature; coalesce them. */ if (g_gflag) { mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used); coalesce(lockcmp, sort_buf, g_nrecs_used); } /* * Coalesce locks within the same symbol if -c option specified. * Coalesce PCs within the same function if -k option specified. */ if (g_cflag || g_kflag) { for (i = 0; i < g_nrecs_used; i++) { int fr; lsp = sort_buf[i]; #ifdef illumos if (g_cflag) coalesce_symbol(&lsp->ls_lock); #endif if (g_kflag) { for (fr = 0; fr < g_stkdepth; fr++) coalesce_symbol(&lsp->ls_stack[fr]); coalesce_symbol(&lsp->ls_caller); } } mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used); coalesce(lockcmp, sort_buf, g_nrecs_used); } /* * Coalesce callers if -w option specified */ if (g_wflag) { mergesort(lock_and_count_cmp_anywhere, sort_buf, merge_buf, g_nrecs_used); coalesce(lockcmp_anywhere, sort_buf, g_nrecs_used); } /* * Coalesce locks if -W option specified */ if (g_Wflag) { mergesort(site_and_count_cmp_anylock, sort_buf, merge_buf, g_nrecs_used); coalesce(sitecmp_anylock, sort_buf, g_nrecs_used); } /* * Sort data by contention count (ls_count) or total time (ls_time), * depending on g_Pflag. Override g_Pflag if time wasn't measured. */ if (g_recsize < LS_TIME) g_Pflag = 0; if (g_Pflag) mergesort(timecmp, sort_buf, merge_buf, g_nrecs_used); else mergesort(countcmp, sort_buf, merge_buf, g_nrecs_used); /* * Display data by event type */ first = &sort_buf[0]; while ((event = (*first)->ls_event) < LS_MAX_EVENTS) { current = first; while ((lsp = *current)->ls_event == event) current++; report_stats(out, first, current - first, ev_count[event], ev_time[event]); first = current; } #ifndef illumos /* * Free lock name buffers */ for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++, lsp = (lsrec_t *)((char *)lsp + g_recsize)) free(lsp->ls_lock); #endif return (0); } static char * format_symbol(char *buf, uintptr_t addr, int show_size) { uintptr_t symoff; char *symname; size_t symsize; symname = addr_to_sym(addr, &symoff, &symsize); if (show_size && symoff == 0) (void) sprintf(buf, "%s[%ld]", symname, (long)symsize); else if (symoff == 0) (void) sprintf(buf, "%s", symname); else if (symoff < 16 && bcmp(symname, "cpu[", 4) == 0) /* CPU+PIL */ #ifdef illumos (void) sprintf(buf, "%s+%ld", symname, (long)symoff); #else (void) sprintf(buf, "%s+%s", symname, g_pri_class[(int)symoff]); #endif else if (symoff <= symsize || (symoff < 256 && addr != symoff)) (void) sprintf(buf, "%s+0x%llx", symname, (unsigned long long)symoff); else (void) sprintf(buf, "0x%llx", (unsigned long long)addr); return (buf); } static void report_stats(FILE *out, lsrec_t **sort_buf, size_t nrecs, uint64_t total_count, uint64_t total_time) { uint32_t event = sort_buf[0]->ls_event; lsrec_t *lsp; double ptotal = 0.0; double percent; int i, j, fr; int displayed; int first_bin, last_bin, max_bin_count, total_bin_count; int rectype; char buf[256]; char lhdr[80], chdr[80]; rectype = g_recsize; if (g_topn == 0) { (void) fprintf(out, "%20llu %s\n", g_rates == 0 ? total_count : ((unsigned long long)total_count * NANOSEC) / g_elapsed, g_event_info[event].ev_desc); return; } (void) sprintf(lhdr, "%s%s", g_Wflag ? "Hottest " : "", g_event_info[event].ev_lhdr); (void) sprintf(chdr, "%s%s", g_wflag ? "Hottest " : "", "Caller"); if (!g_pflag) (void) fprintf(out, "\n%s: %.0f events in %.3f seconds (%.0f events/sec)\n\n", g_event_info[event].ev_desc, (double)total_count, (double)g_elapsed / NANOSEC, (double)total_count * NANOSEC / g_elapsed); if (!g_pflag && rectype < LS_HIST) { (void) sprintf(buf, "%s", g_event_info[event].ev_units); (void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n", g_rates ? "ops/s" : "Count", g_gflag ? "genr" : "indv", "cuml", "rcnt", rectype >= LS_TIME ? buf : "", lhdr, chdr); (void) fprintf(out, "---------------------------------" "----------------------------------------------\n"); } displayed = 0; for (i = 0; i < nrecs; i++) { lsp = sort_buf[i]; if (displayed++ >= g_topn) break; if (g_pflag) { int j; (void) fprintf(out, "%u %u", lsp->ls_event, lsp->ls_count); #ifdef illumos (void) fprintf(out, " %s", format_symbol(buf, lsp->ls_lock, g_cflag)); #else (void) fprintf(out, " %s", lsp->ls_lock); #endif (void) fprintf(out, " %s", format_symbol(buf, lsp->ls_caller, 0)); (void) fprintf(out, " %f", (double)lsp->ls_refcnt / lsp->ls_count); if (rectype >= LS_TIME) (void) fprintf(out, " %llu", (unsigned long long)lsp->ls_time); if (rectype >= LS_HIST) { for (j = 0; j < 64; j++) (void) fprintf(out, " %u", lsp->ls_hist[j]); } for (j = 0; j < LS_MAX_STACK_DEPTH; j++) { if (rectype <= LS_STACK(j) || lsp->ls_stack[j] == 0) break; (void) fprintf(out, " %s", format_symbol(buf, lsp->ls_stack[j], 0)); } (void) fprintf(out, "\n"); continue; } if (rectype >= LS_HIST) { (void) fprintf(out, "---------------------------------" "----------------------------------------------\n"); (void) sprintf(buf, "%s", g_event_info[event].ev_units); (void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n", g_rates ? "ops/s" : "Count", g_gflag ? "genr" : "indv", "cuml", "rcnt", buf, lhdr, chdr); } if (g_Pflag && total_time != 0) percent = (lsp->ls_time * 100.00) / total_time; else percent = (lsp->ls_count * 100.00) / total_count; ptotal += percent; if (rectype >= LS_TIME) (void) sprintf(buf, "%llu", (unsigned long long)(lsp->ls_time / lsp->ls_count)); else buf[0] = '\0'; (void) fprintf(out, "%5llu ", g_rates == 0 ? lsp->ls_count : ((uint64_t)lsp->ls_count * NANOSEC) / g_elapsed); (void) fprintf(out, "%3.0f%% ", percent); if (g_gflag) (void) fprintf(out, "---- "); else (void) fprintf(out, "%3.0f%% ", ptotal); (void) fprintf(out, "%4.2f %8s ", (double)lsp->ls_refcnt / lsp->ls_count, buf); #ifdef illumos (void) fprintf(out, "%-22s ", format_symbol(buf, lsp->ls_lock, g_cflag)); #else (void) fprintf(out, "%-22s ", lsp->ls_lock); #endif (void) fprintf(out, "%-24s\n", format_symbol(buf, lsp->ls_caller, 0)); if (rectype < LS_HIST) continue; (void) fprintf(out, "\n"); (void) fprintf(out, "%10s %31s %-9s %-24s\n", g_event_info[event].ev_units, "------ Time Distribution ------", g_rates ? "ops/s" : "count", rectype > LS_STACK(0) ? "Stack" : ""); first_bin = 0; while (lsp->ls_hist[first_bin] == 0) first_bin++; last_bin = 63; while (lsp->ls_hist[last_bin] == 0) last_bin--; max_bin_count = 0; total_bin_count = 0; for (j = first_bin; j <= last_bin; j++) { total_bin_count += lsp->ls_hist[j]; if (lsp->ls_hist[j] > max_bin_count) max_bin_count = lsp->ls_hist[j]; } /* * If we went a few frames below the caller, ignore them */ for (fr = 3; fr > 0; fr--) if (lsp->ls_stack[fr] == lsp->ls_caller) break; for (j = first_bin; j <= last_bin; j++) { uint_t depth = (lsp->ls_hist[j] * 30) / total_bin_count; (void) fprintf(out, "%10llu |%s%s %-9u ", 1ULL << j, "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" + 30 - depth, " " + depth, g_rates == 0 ? lsp->ls_hist[j] : (uint_t)(((uint64_t)lsp->ls_hist[j] * NANOSEC) / g_elapsed)); if (rectype <= LS_STACK(fr) || lsp->ls_stack[fr] == 0) { (void) fprintf(out, "\n"); continue; } (void) fprintf(out, "%-24s\n", format_symbol(buf, lsp->ls_stack[fr], 0)); fr++; } while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) { (void) fprintf(out, "%15s %-36s %-24s\n", "", "", format_symbol(buf, lsp->ls_stack[fr], 0)); fr++; } } if (!g_pflag) (void) fprintf(out, "---------------------------------" "----------------------------------------------\n"); (void) fflush(out); } static void report_trace(FILE *out, lsrec_t **sort_buf) { lsrec_t *lsp; int i, fr; int rectype; char buf[256], buf2[256]; rectype = g_recsize; if (!g_pflag) { (void) fprintf(out, "%5s %7s %11s %-24s %-24s\n", "Event", "Time", "Owner", "Lock", "Caller"); (void) fprintf(out, "---------------------------------" "----------------------------------------------\n"); } for (i = 0; i < g_nrecs_used; i++) { lsp = sort_buf[i]; if (lsp->ls_event >= LS_MAX_EVENTS || lsp->ls_count == 0) continue; (void) fprintf(out, "%2d %10llu %11p %-24s %-24s\n", lsp->ls_event, (unsigned long long)lsp->ls_time, (void *)lsp->ls_next, #ifdef illumos format_symbol(buf, lsp->ls_lock, 0), #else lsp->ls_lock, #endif format_symbol(buf2, lsp->ls_caller, 0)); if (rectype <= LS_STACK(0)) continue; /* * If we went a few frames below the caller, ignore them */ for (fr = 3; fr > 0; fr--) if (lsp->ls_stack[fr] == lsp->ls_caller) break; while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) { (void) fprintf(out, "%53s %-24s\n", "", format_symbol(buf, lsp->ls_stack[fr], 0)); fr++; } (void) fprintf(out, "\n"); } (void) fflush(out); }