%{ /*- * Written by Pace Willisson (pace@blitz.com) * and placed in the public domain. * * Largely rewritten by J.T. Conklin (jtc@wimsey.com) */ #include #include #include #include #include #include #include #include #include #include #include #include /* * POSIX specifies a specific error code for syntax errors. We exit * with this code for all errors. */ #define ERR_EXIT 2 enum valtype { integer, numeric_string, string } ; struct val { enum valtype type; union { char *s; intmax_t i; } u; } ; char **av; int nonposix; struct val *result; void assert_to_integer(struct val *); void assert_div(intmax_t, intmax_t); void assert_minus(intmax_t, intmax_t, intmax_t); void assert_plus(intmax_t, intmax_t, intmax_t); void assert_times(intmax_t, intmax_t, intmax_t); int compare_vals(struct val *, struct val *); void free_value(struct val *); int is_integer(const char *); int is_string(struct val *); int is_zero_or_null(struct val *); struct val *make_integer(intmax_t); struct val *make_str(const char *); struct val *op_and(struct val *, struct val *); struct val *op_colon(struct val *, struct val *); struct val *op_div(struct val *, struct val *); struct val *op_eq(struct val *, struct val *); struct val *op_ge(struct val *, struct val *); struct val *op_gt(struct val *, struct val *); struct val *op_le(struct val *, struct val *); struct val *op_lt(struct val *, struct val *); struct val *op_minus(struct val *, struct val *); struct val *op_ne(struct val *, struct val *); struct val *op_or(struct val *, struct val *); struct val *op_plus(struct val *, struct val *); struct val *op_rem(struct val *, struct val *); struct val *op_times(struct val *, struct val *); int to_integer(struct val *); void to_string(struct val *); int yyerror(const char *); int yylex(void); %} %union { struct val *val; } %left '|' %left '&' %left '=' '>' '<' GE LE NE %left '+' '-' %left '*' '/' '%' %left ':' %token TOKEN %type start expr %% start: expr { result = $$; } expr: TOKEN | '(' expr ')' { $$ = $2; } | expr '|' expr { $$ = op_or($1, $3); } | expr '&' expr { $$ = op_and($1, $3); } | expr '=' expr { $$ = op_eq($1, $3); } | expr '>' expr { $$ = op_gt($1, $3); } | expr '<' expr { $$ = op_lt($1, $3); } | expr GE expr { $$ = op_ge($1, $3); } | expr LE expr { $$ = op_le($1, $3); } | expr NE expr { $$ = op_ne($1, $3); } | expr '+' expr { $$ = op_plus($1, $3); } | expr '-' expr { $$ = op_minus($1, $3); } | expr '*' expr { $$ = op_times($1, $3); } | expr '/' expr { $$ = op_div($1, $3); } | expr '%' expr { $$ = op_rem($1, $3); } | expr ':' expr { $$ = op_colon($1, $3); } ; %% struct val * make_integer(intmax_t i) { struct val *vp; vp = (struct val *)malloc(sizeof(*vp)); if (vp == NULL) errx(ERR_EXIT, "malloc() failed"); vp->type = integer; vp->u.i = i; return (vp); } struct val * make_str(const char *s) { struct val *vp; vp = (struct val *)malloc(sizeof(*vp)); if (vp == NULL || ((vp->u.s = strdup(s)) == NULL)) errx(ERR_EXIT, "malloc() failed"); if (is_integer(s)) vp->type = numeric_string; else vp->type = string; return (vp); } void free_value(struct val *vp) { if (vp->type == string || vp->type == numeric_string) free(vp->u.s); } int to_integer(struct val *vp) { intmax_t i; /* we can only convert numeric_string to integer, here */ if (vp->type == numeric_string) { errno = 0; i = strtoimax(vp->u.s, (char **)NULL, 10); /* just keep as numeric_string, if the conversion fails */ if (errno != ERANGE) { free(vp->u.s); vp->u.i = i; vp->type = integer; } } return (vp->type == integer); } void assert_to_integer(struct val *vp) { if (vp->type == string) errx(ERR_EXIT, "not a decimal number: '%s'", vp->u.s); if (!to_integer(vp)) errx(ERR_EXIT, "operand too large: '%s'", vp->u.s); } void to_string(struct val *vp) { char *tmp; if (vp->type == string || vp->type == numeric_string) return; /* * log_10(x) ~= 0.3 * log_2(x). Rounding up gives the number * of digits; add one each for the sign and terminating null * character, respectively. */ #define NDIGITS(x) (3 * (sizeof(x) * CHAR_BIT) / 10 + 1 + 1 + 1) tmp = malloc(NDIGITS(vp->u.i)); if (tmp == NULL) errx(ERR_EXIT, "malloc() failed"); sprintf(tmp, "%jd", vp->u.i); vp->type = string; vp->u.s = tmp; } int is_integer(const char *s) { if (nonposix) { if (*s == '\0') return (1); while (isspace((unsigned char)*s)) s++; } if (*s == '-' || (nonposix && *s == '+')) s++; if (*s == '\0') return (0); while (isdigit((unsigned char)*s)) s++; return (*s == '\0'); } int is_string(struct val *vp) { /* only TRUE if this string is not a valid integer */ return (vp->type == string); } int yylex(void) { char *p; if (*av == NULL) return (0); p = *av++; if (strlen(p) == 1) { if (strchr("|&=<>+-*/%:()", *p)) return (*p); } else if (strlen(p) == 2 && p[1] == '=') { switch (*p) { case '>': return (GE); case '<': return (LE); case '!': return (NE); } } yylval.val = make_str(p); return (TOKEN); } int is_zero_or_null(struct val *vp) { if (vp->type == integer) return (vp->u.i == 0); return (*vp->u.s == 0 || (to_integer(vp) && vp->u.i == 0)); } int main(int argc, char *argv[]) { int c; setlocale(LC_ALL, ""); if (getenv("EXPR_COMPAT") != NULL || check_utility_compat("expr")) { av = argv + 1; nonposix = 1; } else { while ((c = getopt(argc, argv, "e")) != -1) { switch (c) { case 'e': nonposix = 1; break; default: errx(ERR_EXIT, "usage: expr [-e] expression\n"); } } av = argv + optind; } yyparse(); if (result->type == integer) printf("%jd\n", result->u.i); else printf("%s\n", result->u.s); return (is_zero_or_null(result)); } int yyerror(const char *s __unused) { errx(ERR_EXIT, "syntax error"); } struct val * op_or(struct val *a, struct val *b) { if (!is_zero_or_null(a)) { free_value(b); return (a); } free_value(a); if (!is_zero_or_null(b)) return (b); free_value(b); return (make_integer((intmax_t)0)); } struct val * op_and(struct val *a, struct val *b) { if (is_zero_or_null(a) || is_zero_or_null(b)) { free_value(a); free_value(b); return (make_integer((intmax_t)0)); } else { free_value(b); return (a); } } int compare_vals(struct val *a, struct val *b) { int r; if (is_string(a) || is_string(b)) { to_string(a); to_string(b); r = strcoll(a->u.s, b->u.s); } else { assert_to_integer(a); assert_to_integer(b); if (a->u.i > b->u.i) r = 1; else if (a->u.i < b->u.i) r = -1; else r = 0; } free_value(a); free_value(b); return (r); } struct val * op_eq(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) == 0))); } struct val * op_gt(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) > 0))); } struct val * op_lt(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) < 0))); } struct val * op_ge(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) >= 0))); } struct val * op_le(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) <= 0))); } struct val * op_ne(struct val *a, struct val *b) { return (make_integer((intmax_t)(compare_vals(a, b) != 0))); } void assert_plus(intmax_t a, intmax_t b, intmax_t r) { /* * sum of two positive numbers must be positive, * sum of two negative numbers must be negative */ if ((a > 0 && b > 0 && r <= 0) || (a < 0 && b < 0 && r >= 0)) errx(ERR_EXIT, "overflow"); } struct val * op_plus(struct val *a, struct val *b) { struct val *r; assert_to_integer(a); assert_to_integer(b); r = make_integer(a->u.i + b->u.i); assert_plus(a->u.i, b->u.i, r->u.i); free_value(a); free_value(b); return (r); } void assert_minus(intmax_t a, intmax_t b, intmax_t r) { if ((a >= 0 && b < 0 && r <= 0) || (a < 0 && b > 0 && r >= 0)) errx(ERR_EXIT, "overflow"); } struct val * op_minus(struct val *a, struct val *b) { struct val *r; assert_to_integer(a); assert_to_integer(b); r = make_integer(a->u.i - b->u.i); assert_minus(a->u.i, b->u.i, r->u.i); free_value(a); free_value(b); return (r); } /* * We depend on undefined behaviour giving a result (in r). * To test this result, pass it as volatile. This prevents * optimizing away of the test based on the undefined behaviour. */ void assert_times(intmax_t a, intmax_t b, volatile intmax_t r) { /* * If the first operand is 0, no overflow is possible, * else the result of the division test must match the * second operand. * * Be careful to avoid overflow in the overflow test, as * in assert_div(). Overflow in division would kill us * with a SIGFPE before getting the test wrong. In old * buggy versions, optimization used to give a null test * instead of a SIGFPE. */ if ((a == -1 && b == INTMAX_MIN) || (a != 0 && r / a != b)) errx(ERR_EXIT, "overflow"); } struct val * op_times(struct val *a, struct val *b) { struct val *r; assert_to_integer(a); assert_to_integer(b); r = make_integer(a->u.i * b->u.i); assert_times(a->u.i, b->u.i, r->u.i); free_value(a); free_value(b); return (r); } void assert_div(intmax_t a, intmax_t b) { if (b == 0) errx(ERR_EXIT, "division by zero"); /* only INTMAX_MIN / -1 causes overflow */ if (a == INTMAX_MIN && b == -1) errx(ERR_EXIT, "overflow"); } struct val * op_div(struct val *a, struct val *b) { struct val *r; assert_to_integer(a); assert_to_integer(b); /* assert based on operands only, not on result */ assert_div(a->u.i, b->u.i); r = make_integer(a->u.i / b->u.i); free_value(a); free_value(b); return (r); } struct val * op_rem(struct val *a, struct val *b) { struct val *r; assert_to_integer(a); assert_to_integer(b); /* pass a=1 to only check for div by zero */ assert_div(1, b->u.i); r = make_integer(a->u.i % b->u.i); free_value(a); free_value(b); return (r); } struct val * op_colon(struct val *a, struct val *b) { regex_t rp; regmatch_t rm[2]; char errbuf[256]; int eval; struct val *v; /* coerce both arguments to strings */ to_string(a); to_string(b); /* compile regular expression */ if ((eval = regcomp(&rp, b->u.s, 0)) != 0) { regerror(eval, &rp, errbuf, sizeof(errbuf)); errx(ERR_EXIT, "%s", errbuf); } /* compare string against pattern */ /* remember that patterns are anchored to the beginning of the line */ if (regexec(&rp, a->u.s, (size_t)2, rm, 0) == 0 && rm[0].rm_so == 0) if (rm[1].rm_so >= 0) { *(a->u.s + rm[1].rm_eo) = '\0'; v = make_str(a->u.s + rm[1].rm_so); } else v = make_integer((intmax_t)(rm[0].rm_eo)); else if (rp.re_nsub == 0) v = make_integer((intmax_t)0); else v = make_str(""); /* free arguments and pattern buffer */ free_value(a); free_value(b); regfree(&rp); return (v); }