Lines Matching full:y1
12 /* j1(x), y1(x)
22 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
38 * Method -- y1(x):
39 * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
42 * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
43 * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
44 * We use the following function to approximate y1,
45 * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
49 * Note: For tiny x, 1/x dominate y1 and hence
50 * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
52 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
103 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) in j1()
139 y1(double x) in y1() function
147 * y1(NaN) = NaN. in y1()
148 * y1(Inf) = 0. in y1()
149 * y1(-Inf) = NaN and raise invalid exception. in y1()
152 /* y1(+-0) = -inf and raise divide-by-zero exception. */ in y1()
154 /* y1(x<0) = NaN and raise invalid exception. */ in y1()
165 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) in y1()