Lines Matching defs:bits
66 * size in bits. The default value of 512 bits is a compromise between
69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
71 * bits. The computing time for sizes greater than 2048 bits is
123 #define PLEN 512 /* default prime modulus size (bits) */
124 #define ILEN 512 /* default identity modulus size (bits) */
180 u_int modulus = PLEN; /* prime modulus size (bits) */
181 u_int modulus2 = ILEN; /* identity modulus size (bits) */
1017 fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
1074 "Generating DSA parameters (%d bits)...\n", modulus);
1086 fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1177 fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1357 "Generating GQ parameters (%d bits)...\n",
1506 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1508 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1587 * the order of 512 bits. One or more of these may have to be
1589 * more than 31 distinct primes for 512 bits or 61 primes for
1590 * 1024 bits. The latter can take several hundred iterations
1595 "Generating MV parameters for %d keys (%d bits)...\n", n,
1627 * it as hard to find n small prime factors totalling n bits as
1628 * it is to find two large prime factors totalling n bits?
1686 "Generating polynomial coefficients for %d roots (%d bits)\n",
2208 int bits,
2221 rsa, bits, bne, gcb)))
2233 int bits,
2246 dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))