
The FreeBSD Kernel Stress Test Suite

Peter Holm
The FreeBSD Project
peter@holm.cc

Abstract

This paper presents the second generation kernel stability test suite. Experience with the previous script based ver-
sion and reasons to move on to a new one are described.

1 Motivation

Uptime is by far one of the more important feature in
an operating system. It does not matter how advanced
feature an OS provides, if it keeps crashing all time
time.

In order to weed out those problems it is important that
as many people as possible, on as many different hard-
ware configurations, test the OS before a release.

A test suite must therefore be straightforward to use
and easy to extend, to accommodate the widest range
of developers.

2 Prior Work

2.1 FreeBSD

The previous version [1] of the test suite was mostly
implemented as shell scripts and has been in use with
the FreeBSD Project since June 1999. Since then it has
evolved into 27 different tests. In May 2003 logging of
problems found, started as a way to promote the test
suite.

This is a graph of some 100 problems found:

So as a prototype, the script based version of a Kernel
Stress Test Suite seems to have succeeded.

2.2 Linux

There is a Linux Test Project [2] that combines both
stress- and functionality testing. One of the subtests are
also available to FreeBSD: The Open POSIX Test
Suite [3]. Another subtest, The Ballista Project [4], im-
plements stress testing of syscalls, but is not straight
forward to port.

3 The Test Suite

The key functionality of this test suite is that it runs a
random number of test programs for a random period,
in random incarnations and in random sequence. This
very simple idea is implemented in the run test pro-
gram, which controls the behavior of all the other test
programs.

To simplify writing test programs, a test harness is im-
plemented as a library that handles running the test pro-
grams. All the creator of new test programs has to im-
plement are three procedures: setup(), cleanup() and
test().

3.1 The run Program

The run program is the control program that runs all
the test programs. All tests are run for a default period
of 60 seconds. Each test program sleeps for a random
period between 1 and 10 seconds before starting their
test. A load factor is used to determine if each test
should skip a test cycle. Each program is started in a
random number of incarnations.

 3.2 The Test Programs
Only a few test programs have been implemented so
far.

The creat program tests the creat() system call by creat-
ing lots of empty files and then deleting them again.Illustration 1 Problems found with the script based

version of the test suite.

The mkdir program test the mkdir() system call by cre-
ating deep directories and then deleting them again.

The syscall program tests system calls by passing ran-
dom argument values. The primary goal is to ensure
that all syscalls validate user arguments.

The swap program uses up memory to ensure that
swapping occurs. This is not a test in it selves, but pro-
suces system load.

3.3 Configuration

Each test program accepts a set of predefined options
as well as environment variables. The full test relies on
a set of environment variables controlling the execution
of the tests.

3.4 Running

The tests may be run individually in their respective di-
rectories or as whole from the top directory by the
run.sh shell script. The shell script accepts one optional
parameter; the configuration file.

3.5 Known Problems

One drawback with the "random all" method is that
recreating panics during bug fix testing can be time
consuming. Depending on the type of problem it may
take any where from minutes to days of testing to get a
panic again.

4 Conclusion

The new version of the stress test suite should reach a
broader range of kernel developers and thus hopefully
catch even more kernel bugs.

5 Availability

http://www.holm.cc/stress/src/stress2.tgz

6 References
[1] The initial version of The Kernel Stress Test Suite
is available at http://www.holm.cc/stress/src/stress.t-
gz
[2] The Linux Test Project test suite http://ltp.source-
forge.net/
[3] The Open POSIX Test Suite http://posixtest.source-
forge.net/

[4] The Ballista Project http://www-
2.cs.cmu.edu/afs/cs/project/edrc-ballista/www/in-
dex.html

