super.c (ef5fd681d5159d64c464715d657660f0151c7419) super.c (ed318a6cc0b620440e65f48eb527dc3df7269ce4)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46#include <linux/part_stat.h>
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h" /* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static struct mutex ext4_li_mtx;
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static int ext4_commit_super(struct super_block *sb, int sync);
69static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73static int ext4_sync_fs(struct super_block *sb, int wait);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static int ext4_freeze(struct super_block *sb);
78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83static void ext4_destroy_lazyinit_thread(void);
84static void ext4_unregister_li_request(struct super_block *sb);
85static void ext4_clear_request_list(void);
86static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89/*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124};
125MODULE_ALIAS_FS("ext2");
126MODULE_ALIAS("ext2");
127#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128#else
129#define IS_EXT2_SB(sb) (0)
130#endif
131
132
133static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139};
140MODULE_ALIAS_FS("ext3");
141MODULE_ALIAS("ext3");
142#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144/*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150struct buffer_head *
151ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152{
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165}
166
167static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169{
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174}
175
176static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178{
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186}
187
188static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190{
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195}
196
197void ext4_superblock_csum_set(struct super_block *sb)
198{
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205}
206
207ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221}
222
223ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229}
230
231__u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237}
238
239__u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245}
246
247__u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253}
254
255__u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
257{
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261}
262
263void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
281{
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285}
286
287void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309}
310
311void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
313{
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
317}
318
319static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
320{
321 time64_t now = ktime_get_real_seconds();
322
323 now = clamp_val(now, 0, (1ull << 40) - 1);
324
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
327}
328
329static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
330{
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
332}
333#define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335#define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
337
338static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
341{
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
343 int err;
344
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
347 return;
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
354 switch (error) {
355 case EIO:
356 err = EXT4_ERR_EIO;
357 break;
358 case ENOMEM:
359 err = EXT4_ERR_ENOMEM;
360 break;
361 case EFSBADCRC:
362 err = EXT4_ERR_EFSBADCRC;
363 break;
364 case 0:
365 case EFSCORRUPTED:
366 err = EXT4_ERR_EFSCORRUPTED;
367 break;
368 case ENOSPC:
369 err = EXT4_ERR_ENOSPC;
370 break;
371 case ENOKEY:
372 err = EXT4_ERR_ENOKEY;
373 break;
374 case EROFS:
375 err = EXT4_ERR_EROFS;
376 break;
377 case EFBIG:
378 err = EXT4_ERR_EFBIG;
379 break;
380 case EEXIST:
381 err = EXT4_ERR_EEXIST;
382 break;
383 case ERANGE:
384 err = EXT4_ERR_ERANGE;
385 break;
386 case EOVERFLOW:
387 err = EXT4_ERR_EOVERFLOW;
388 break;
389 case EBUSY:
390 err = EXT4_ERR_EBUSY;
391 break;
392 case ENOTDIR:
393 err = EXT4_ERR_ENOTDIR;
394 break;
395 case ENOTEMPTY:
396 err = EXT4_ERR_ENOTEMPTY;
397 break;
398 case ESHUTDOWN:
399 err = EXT4_ERR_ESHUTDOWN;
400 break;
401 case EFAULT:
402 err = EXT4_ERR_EFAULT;
403 break;
404 default:
405 err = EXT4_ERR_UNKNOWN;
406 }
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425}
426
427static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
430{
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
434}
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475static bool system_going_down(void)
476{
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
479}
480
481/* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
483 *
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
490 *
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
494 */
495
496static void ext4_handle_error(struct super_block *sb)
497{
498 if (test_opt(sb, WARN_ON_ERROR))
499 WARN_ON_ONCE(1);
500
501 if (sb_rdonly(sb))
502 return;
503
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
506
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
508 if (journal)
509 jbd2_journal_abort(journal, -EIO);
510 }
511 /*
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
514 * disabled.
515 */
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
518 /*
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
521 */
522 smp_wmb();
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 if (EXT4_SB(sb)->s_journal &&
526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
527 return;
528 panic("EXT4-fs (device %s): panic forced after error\n",
529 sb->s_id);
530 }
531}
532
533#define ext4_error_ratelimit(sb) \
534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
535 "EXT4-fs error")
536
537void __ext4_error(struct super_block *sb, const char *function,
538 unsigned int line, int error, __u64 block,
539 const char *fmt, ...)
540{
541 struct va_format vaf;
542 va_list args;
543
544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
545 return;
546
547 trace_ext4_error(sb, function, line);
548 if (ext4_error_ratelimit(sb)) {
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 printk(KERN_CRIT
553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
554 sb->s_id, function, line, current->comm, &vaf);
555 va_end(args);
556 }
557 save_error_info(sb, error, 0, block, function, line);
558 ext4_handle_error(sb);
559}
560
561void __ext4_error_inode(struct inode *inode, const char *function,
562 unsigned int line, ext4_fsblk_t block, int error,
563 const char *fmt, ...)
564{
565 va_list args;
566 struct va_format vaf;
567
568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
569 return;
570
571 trace_ext4_error(inode->i_sb, function, line);
572 if (ext4_error_ratelimit(inode->i_sb)) {
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
578 "inode #%lu: block %llu: comm %s: %pV\n",
579 inode->i_sb->s_id, function, line, inode->i_ino,
580 block, current->comm, &vaf);
581 else
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
583 "inode #%lu: comm %s: %pV\n",
584 inode->i_sb->s_id, function, line, inode->i_ino,
585 current->comm, &vaf);
586 va_end(args);
587 }
588 save_error_info(inode->i_sb, error, inode->i_ino, block,
589 function, line);
590 ext4_handle_error(inode->i_sb);
591}
592
593void __ext4_error_file(struct file *file, const char *function,
594 unsigned int line, ext4_fsblk_t block,
595 const char *fmt, ...)
596{
597 va_list args;
598 struct va_format vaf;
599 struct inode *inode = file_inode(file);
600 char pathname[80], *path;
601
602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
603 return;
604
605 trace_ext4_error(inode->i_sb, function, line);
606 if (ext4_error_ratelimit(inode->i_sb)) {
607 path = file_path(file, pathname, sizeof(pathname));
608 if (IS_ERR(path))
609 path = "(unknown)";
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 if (block)
614 printk(KERN_CRIT
615 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
616 "block %llu: comm %s: path %s: %pV\n",
617 inode->i_sb->s_id, function, line, inode->i_ino,
618 block, current->comm, path, &vaf);
619 else
620 printk(KERN_CRIT
621 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
622 "comm %s: path %s: %pV\n",
623 inode->i_sb->s_id, function, line, inode->i_ino,
624 current->comm, path, &vaf);
625 va_end(args);
626 }
627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
628 function, line);
629 ext4_handle_error(inode->i_sb);
630}
631
632const char *ext4_decode_error(struct super_block *sb, int errno,
633 char nbuf[16])
634{
635 char *errstr = NULL;
636
637 switch (errno) {
638 case -EFSCORRUPTED:
639 errstr = "Corrupt filesystem";
640 break;
641 case -EFSBADCRC:
642 errstr = "Filesystem failed CRC";
643 break;
644 case -EIO:
645 errstr = "IO failure";
646 break;
647 case -ENOMEM:
648 errstr = "Out of memory";
649 break;
650 case -EROFS:
651 if (!sb || (EXT4_SB(sb)->s_journal &&
652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
653 errstr = "Journal has aborted";
654 else
655 errstr = "Readonly filesystem";
656 break;
657 default:
658 /* If the caller passed in an extra buffer for unknown
659 * errors, textualise them now. Else we just return
660 * NULL. */
661 if (nbuf) {
662 /* Check for truncated error codes... */
663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
664 errstr = nbuf;
665 }
666 break;
667 }
668
669 return errstr;
670}
671
672/* __ext4_std_error decodes expected errors from journaling functions
673 * automatically and invokes the appropriate error response. */
674
675void __ext4_std_error(struct super_block *sb, const char *function,
676 unsigned int line, int errno)
677{
678 char nbuf[16];
679 const char *errstr;
680
681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
682 return;
683
684 /* Special case: if the error is EROFS, and we're not already
685 * inside a transaction, then there's really no point in logging
686 * an error. */
687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
688 return;
689
690 if (ext4_error_ratelimit(sb)) {
691 errstr = ext4_decode_error(sb, errno, nbuf);
692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
693 sb->s_id, function, line, errstr);
694 }
695
696 save_error_info(sb, -errno, 0, 0, function, line);
697 ext4_handle_error(sb);
698}
699
700/*
701 * ext4_abort is a much stronger failure handler than ext4_error. The
702 * abort function may be used to deal with unrecoverable failures such
703 * as journal IO errors or ENOMEM at a critical moment in log management.
704 *
705 * We unconditionally force the filesystem into an ABORT|READONLY state,
706 * unless the error response on the fs has been set to panic in which
707 * case we take the easy way out and panic immediately.
708 */
709
710void __ext4_abort(struct super_block *sb, const char *function,
711 unsigned int line, int error, const char *fmt, ...)
712{
713 struct va_format vaf;
714 va_list args;
715
716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
717 return;
718
719 save_error_info(sb, error, 0, 0, function, line);
720 va_start(args, fmt);
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
724 sb->s_id, function, line, &vaf);
725 va_end(args);
726
727 if (sb_rdonly(sb) == 0) {
728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
730 /*
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
733 */
734 smp_wmb();
735 sb->s_flags |= SB_RDONLY;
736 if (EXT4_SB(sb)->s_journal)
737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
738 }
739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
740 if (EXT4_SB(sb)->s_journal &&
741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
742 return;
743 panic("EXT4-fs panic from previous error\n");
744 }
745}
746
747void __ext4_msg(struct super_block *sb,
748 const char *prefix, const char *fmt, ...)
749{
750 struct va_format vaf;
751 va_list args;
752
753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
760 va_end(args);
761}
762
763#define ext4_warning_ratelimit(sb) \
764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
765 "EXT4-fs warning")
766
767void __ext4_warning(struct super_block *sb, const char *function,
768 unsigned int line, const char *fmt, ...)
769{
770 struct va_format vaf;
771 va_list args;
772
773 if (!ext4_warning_ratelimit(sb))
774 return;
775
776 va_start(args, fmt);
777 vaf.fmt = fmt;
778 vaf.va = &args;
779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
780 sb->s_id, function, line, &vaf);
781 va_end(args);
782}
783
784void __ext4_warning_inode(const struct inode *inode, const char *function,
785 unsigned int line, const char *fmt, ...)
786{
787 struct va_format vaf;
788 va_list args;
789
790 if (!ext4_warning_ratelimit(inode->i_sb))
791 return;
792
793 va_start(args, fmt);
794 vaf.fmt = fmt;
795 vaf.va = &args;
796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
798 function, line, inode->i_ino, current->comm, &vaf);
799 va_end(args);
800}
801
802void __ext4_grp_locked_error(const char *function, unsigned int line,
803 struct super_block *sb, ext4_group_t grp,
804 unsigned long ino, ext4_fsblk_t block,
805 const char *fmt, ...)
806__releases(bitlock)
807__acquires(bitlock)
808{
809 struct va_format vaf;
810 va_list args;
811
812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
813 return;
814
815 trace_ext4_error(sb, function, line);
816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
817
818 if (ext4_error_ratelimit(sb)) {
819 va_start(args, fmt);
820 vaf.fmt = fmt;
821 vaf.va = &args;
822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
823 sb->s_id, function, line, grp);
824 if (ino)
825 printk(KERN_CONT "inode %lu: ", ino);
826 if (block)
827 printk(KERN_CONT "block %llu:",
828 (unsigned long long) block);
829 printk(KERN_CONT "%pV\n", &vaf);
830 va_end(args);
831 }
832
833 if (test_opt(sb, WARN_ON_ERROR))
834 WARN_ON_ONCE(1);
835
836 if (test_opt(sb, ERRORS_CONT)) {
837 ext4_commit_super(sb, 0);
838 return;
839 }
840
841 ext4_unlock_group(sb, grp);
842 ext4_commit_super(sb, 1);
843 ext4_handle_error(sb);
844 /*
845 * We only get here in the ERRORS_RO case; relocking the group
846 * may be dangerous, but nothing bad will happen since the
847 * filesystem will have already been marked read/only and the
848 * journal has been aborted. We return 1 as a hint to callers
849 * who might what to use the return value from
850 * ext4_grp_locked_error() to distinguish between the
851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
852 * aggressively from the ext4 function in question, with a
853 * more appropriate error code.
854 */
855 ext4_lock_group(sb, grp);
856 return;
857}
858
859void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
860 ext4_group_t group,
861 unsigned int flags)
862{
863 struct ext4_sb_info *sbi = EXT4_SB(sb);
864 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
866 int ret;
867
868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
870 &grp->bb_state);
871 if (!ret)
872 percpu_counter_sub(&sbi->s_freeclusters_counter,
873 grp->bb_free);
874 }
875
876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
878 &grp->bb_state);
879 if (!ret && gdp) {
880 int count;
881
882 count = ext4_free_inodes_count(sb, gdp);
883 percpu_counter_sub(&sbi->s_freeinodes_counter,
884 count);
885 }
886 }
887}
888
889void ext4_update_dynamic_rev(struct super_block *sb)
890{
891 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
892
893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
894 return;
895
896 ext4_warning(sb,
897 "updating to rev %d because of new feature flag, "
898 "running e2fsck is recommended",
899 EXT4_DYNAMIC_REV);
900
901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
904 /* leave es->s_feature_*compat flags alone */
905 /* es->s_uuid will be set by e2fsck if empty */
906
907 /*
908 * The rest of the superblock fields should be zero, and if not it
909 * means they are likely already in use, so leave them alone. We
910 * can leave it up to e2fsck to clean up any inconsistencies there.
911 */
912}
913
914/*
915 * Open the external journal device
916 */
917static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
918{
919 struct block_device *bdev;
920
921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
922 if (IS_ERR(bdev))
923 goto fail;
924 return bdev;
925
926fail:
927 ext4_msg(sb, KERN_ERR,
928 "failed to open journal device unknown-block(%u,%u) %ld",
929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
930 return NULL;
931}
932
933/*
934 * Release the journal device
935 */
936static void ext4_blkdev_put(struct block_device *bdev)
937{
938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
939}
940
941static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
942{
943 struct block_device *bdev;
944 bdev = sbi->journal_bdev;
945 if (bdev) {
946 ext4_blkdev_put(bdev);
947 sbi->journal_bdev = NULL;
948 }
949}
950
951static inline struct inode *orphan_list_entry(struct list_head *l)
952{
953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
954}
955
956static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
957{
958 struct list_head *l;
959
960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
961 le32_to_cpu(sbi->s_es->s_last_orphan));
962
963 printk(KERN_ERR "sb_info orphan list:\n");
964 list_for_each(l, &sbi->s_orphan) {
965 struct inode *inode = orphan_list_entry(l);
966 printk(KERN_ERR " "
967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
968 inode->i_sb->s_id, inode->i_ino, inode,
969 inode->i_mode, inode->i_nlink,
970 NEXT_ORPHAN(inode));
971 }
972}
973
974#ifdef CONFIG_QUOTA
975static int ext4_quota_off(struct super_block *sb, int type);
976
977static inline void ext4_quota_off_umount(struct super_block *sb)
978{
979 int type;
980
981 /* Use our quota_off function to clear inode flags etc. */
982 for (type = 0; type < EXT4_MAXQUOTAS; type++)
983 ext4_quota_off(sb, type);
984}
985
986/*
987 * This is a helper function which is used in the mount/remount
988 * codepaths (which holds s_umount) to fetch the quota file name.
989 */
990static inline char *get_qf_name(struct super_block *sb,
991 struct ext4_sb_info *sbi,
992 int type)
993{
994 return rcu_dereference_protected(sbi->s_qf_names[type],
995 lockdep_is_held(&sb->s_umount));
996}
997#else
998static inline void ext4_quota_off_umount(struct super_block *sb)
999{
1000}
1001#endif
1002
1003static void ext4_put_super(struct super_block *sb)
1004{
1005 struct ext4_sb_info *sbi = EXT4_SB(sb);
1006 struct ext4_super_block *es = sbi->s_es;
1007 struct buffer_head **group_desc;
1008 struct flex_groups **flex_groups;
1009 int aborted = 0;
1010 int i, err;
1011
1012 ext4_unregister_li_request(sb);
1013 ext4_quota_off_umount(sb);
1014
1015 destroy_workqueue(sbi->rsv_conversion_wq);
1016
1017 /*
1018 * Unregister sysfs before destroying jbd2 journal.
1019 * Since we could still access attr_journal_task attribute via sysfs
1020 * path which could have sbi->s_journal->j_task as NULL
1021 */
1022 ext4_unregister_sysfs(sb);
1023
1024 if (sbi->s_journal) {
1025 aborted = is_journal_aborted(sbi->s_journal);
1026 err = jbd2_journal_destroy(sbi->s_journal);
1027 sbi->s_journal = NULL;
1028 if ((err < 0) && !aborted) {
1029 ext4_abort(sb, -err, "Couldn't clean up the journal");
1030 }
1031 }
1032
1033 ext4_es_unregister_shrinker(sbi);
1034 del_timer_sync(&sbi->s_err_report);
1035 ext4_release_system_zone(sb);
1036 ext4_mb_release(sb);
1037 ext4_ext_release(sb);
1038
1039 if (!sb_rdonly(sb) && !aborted) {
1040 ext4_clear_feature_journal_needs_recovery(sb);
1041 es->s_state = cpu_to_le16(sbi->s_mount_state);
1042 }
1043 if (!sb_rdonly(sb))
1044 ext4_commit_super(sb, 1);
1045
1046 rcu_read_lock();
1047 group_desc = rcu_dereference(sbi->s_group_desc);
1048 for (i = 0; i < sbi->s_gdb_count; i++)
1049 brelse(group_desc[i]);
1050 kvfree(group_desc);
1051 flex_groups = rcu_dereference(sbi->s_flex_groups);
1052 if (flex_groups) {
1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1054 kvfree(flex_groups[i]);
1055 kvfree(flex_groups);
1056 }
1057 rcu_read_unlock();
1058 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1059 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1060 percpu_counter_destroy(&sbi->s_dirs_counter);
1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1062 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1063#ifdef CONFIG_QUOTA
1064 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1065 kfree(get_qf_name(sb, sbi, i));
1066#endif
1067
1068 /* Debugging code just in case the in-memory inode orphan list
1069 * isn't empty. The on-disk one can be non-empty if we've
1070 * detected an error and taken the fs readonly, but the
1071 * in-memory list had better be clean by this point. */
1072 if (!list_empty(&sbi->s_orphan))
1073 dump_orphan_list(sb, sbi);
1074 J_ASSERT(list_empty(&sbi->s_orphan));
1075
1076 sync_blockdev(sb->s_bdev);
1077 invalidate_bdev(sb->s_bdev);
1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1079 /*
1080 * Invalidate the journal device's buffers. We don't want them
1081 * floating about in memory - the physical journal device may
1082 * hotswapped, and it breaks the `ro-after' testing code.
1083 */
1084 sync_blockdev(sbi->journal_bdev);
1085 invalidate_bdev(sbi->journal_bdev);
1086 ext4_blkdev_remove(sbi);
1087 }
1088
1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1090 sbi->s_ea_inode_cache = NULL;
1091
1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1093 sbi->s_ea_block_cache = NULL;
1094
1095 if (sbi->s_mmp_tsk)
1096 kthread_stop(sbi->s_mmp_tsk);
1097 brelse(sbi->s_sbh);
1098 sb->s_fs_info = NULL;
1099 /*
1100 * Now that we are completely done shutting down the
1101 * superblock, we need to actually destroy the kobject.
1102 */
1103 kobject_put(&sbi->s_kobj);
1104 wait_for_completion(&sbi->s_kobj_unregister);
1105 if (sbi->s_chksum_driver)
1106 crypto_free_shash(sbi->s_chksum_driver);
1107 kfree(sbi->s_blockgroup_lock);
1108 fs_put_dax(sbi->s_daxdev);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46#include <linux/part_stat.h>
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h" /* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static struct mutex ext4_li_mtx;
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static int ext4_commit_super(struct super_block *sb, int sync);
69static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73static int ext4_sync_fs(struct super_block *sb, int wait);
74static int ext4_remount(struct super_block *sb, int *flags, char *data);
75static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76static int ext4_unfreeze(struct super_block *sb);
77static int ext4_freeze(struct super_block *sb);
78static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83static void ext4_destroy_lazyinit_thread(void);
84static void ext4_unregister_li_request(struct super_block *sb);
85static void ext4_clear_request_list(void);
86static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89/*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124};
125MODULE_ALIAS_FS("ext2");
126MODULE_ALIAS("ext2");
127#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128#else
129#define IS_EXT2_SB(sb) (0)
130#endif
131
132
133static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139};
140MODULE_ALIAS_FS("ext3");
141MODULE_ALIAS("ext3");
142#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144/*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150struct buffer_head *
151ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152{
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165}
166
167static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169{
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174}
175
176static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178{
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186}
187
188static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190{
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195}
196
197void ext4_superblock_csum_set(struct super_block *sb)
198{
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205}
206
207ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209{
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213}
214
215ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
217{
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221}
222
223ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
225{
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229}
230
231__u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
233{
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237}
238
239__u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241{
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245}
246
247__u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249{
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253}
254
255__u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
257{
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261}
262
263void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265{
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269}
270
271void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273{
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277}
278
279void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
281{
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285}
286
287void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289{
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293}
294
295void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297{
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301}
302
303void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305{
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309}
310
311void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
313{
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
317}
318
319static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
320{
321 time64_t now = ktime_get_real_seconds();
322
323 now = clamp_val(now, 0, (1ull << 40) - 1);
324
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
327}
328
329static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
330{
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
332}
333#define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335#define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
337
338static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
341{
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
343 int err;
344
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
347 return;
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
354 switch (error) {
355 case EIO:
356 err = EXT4_ERR_EIO;
357 break;
358 case ENOMEM:
359 err = EXT4_ERR_ENOMEM;
360 break;
361 case EFSBADCRC:
362 err = EXT4_ERR_EFSBADCRC;
363 break;
364 case 0:
365 case EFSCORRUPTED:
366 err = EXT4_ERR_EFSCORRUPTED;
367 break;
368 case ENOSPC:
369 err = EXT4_ERR_ENOSPC;
370 break;
371 case ENOKEY:
372 err = EXT4_ERR_ENOKEY;
373 break;
374 case EROFS:
375 err = EXT4_ERR_EROFS;
376 break;
377 case EFBIG:
378 err = EXT4_ERR_EFBIG;
379 break;
380 case EEXIST:
381 err = EXT4_ERR_EEXIST;
382 break;
383 case ERANGE:
384 err = EXT4_ERR_ERANGE;
385 break;
386 case EOVERFLOW:
387 err = EXT4_ERR_EOVERFLOW;
388 break;
389 case EBUSY:
390 err = EXT4_ERR_EBUSY;
391 break;
392 case ENOTDIR:
393 err = EXT4_ERR_ENOTDIR;
394 break;
395 case ENOTEMPTY:
396 err = EXT4_ERR_ENOTEMPTY;
397 break;
398 case ESHUTDOWN:
399 err = EXT4_ERR_ESHUTDOWN;
400 break;
401 case EFAULT:
402 err = EXT4_ERR_EFAULT;
403 break;
404 default:
405 err = EXT4_ERR_UNKNOWN;
406 }
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425}
426
427static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
430{
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
434}
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475static bool system_going_down(void)
476{
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
479}
480
481/* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
483 *
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
490 *
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
494 */
495
496static void ext4_handle_error(struct super_block *sb)
497{
498 if (test_opt(sb, WARN_ON_ERROR))
499 WARN_ON_ONCE(1);
500
501 if (sb_rdonly(sb))
502 return;
503
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
506
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
508 if (journal)
509 jbd2_journal_abort(journal, -EIO);
510 }
511 /*
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
514 * disabled.
515 */
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
518 /*
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
521 */
522 smp_wmb();
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 if (EXT4_SB(sb)->s_journal &&
526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
527 return;
528 panic("EXT4-fs (device %s): panic forced after error\n",
529 sb->s_id);
530 }
531}
532
533#define ext4_error_ratelimit(sb) \
534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
535 "EXT4-fs error")
536
537void __ext4_error(struct super_block *sb, const char *function,
538 unsigned int line, int error, __u64 block,
539 const char *fmt, ...)
540{
541 struct va_format vaf;
542 va_list args;
543
544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
545 return;
546
547 trace_ext4_error(sb, function, line);
548 if (ext4_error_ratelimit(sb)) {
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 printk(KERN_CRIT
553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
554 sb->s_id, function, line, current->comm, &vaf);
555 va_end(args);
556 }
557 save_error_info(sb, error, 0, block, function, line);
558 ext4_handle_error(sb);
559}
560
561void __ext4_error_inode(struct inode *inode, const char *function,
562 unsigned int line, ext4_fsblk_t block, int error,
563 const char *fmt, ...)
564{
565 va_list args;
566 struct va_format vaf;
567
568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
569 return;
570
571 trace_ext4_error(inode->i_sb, function, line);
572 if (ext4_error_ratelimit(inode->i_sb)) {
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
578 "inode #%lu: block %llu: comm %s: %pV\n",
579 inode->i_sb->s_id, function, line, inode->i_ino,
580 block, current->comm, &vaf);
581 else
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
583 "inode #%lu: comm %s: %pV\n",
584 inode->i_sb->s_id, function, line, inode->i_ino,
585 current->comm, &vaf);
586 va_end(args);
587 }
588 save_error_info(inode->i_sb, error, inode->i_ino, block,
589 function, line);
590 ext4_handle_error(inode->i_sb);
591}
592
593void __ext4_error_file(struct file *file, const char *function,
594 unsigned int line, ext4_fsblk_t block,
595 const char *fmt, ...)
596{
597 va_list args;
598 struct va_format vaf;
599 struct inode *inode = file_inode(file);
600 char pathname[80], *path;
601
602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
603 return;
604
605 trace_ext4_error(inode->i_sb, function, line);
606 if (ext4_error_ratelimit(inode->i_sb)) {
607 path = file_path(file, pathname, sizeof(pathname));
608 if (IS_ERR(path))
609 path = "(unknown)";
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 if (block)
614 printk(KERN_CRIT
615 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
616 "block %llu: comm %s: path %s: %pV\n",
617 inode->i_sb->s_id, function, line, inode->i_ino,
618 block, current->comm, path, &vaf);
619 else
620 printk(KERN_CRIT
621 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
622 "comm %s: path %s: %pV\n",
623 inode->i_sb->s_id, function, line, inode->i_ino,
624 current->comm, path, &vaf);
625 va_end(args);
626 }
627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
628 function, line);
629 ext4_handle_error(inode->i_sb);
630}
631
632const char *ext4_decode_error(struct super_block *sb, int errno,
633 char nbuf[16])
634{
635 char *errstr = NULL;
636
637 switch (errno) {
638 case -EFSCORRUPTED:
639 errstr = "Corrupt filesystem";
640 break;
641 case -EFSBADCRC:
642 errstr = "Filesystem failed CRC";
643 break;
644 case -EIO:
645 errstr = "IO failure";
646 break;
647 case -ENOMEM:
648 errstr = "Out of memory";
649 break;
650 case -EROFS:
651 if (!sb || (EXT4_SB(sb)->s_journal &&
652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
653 errstr = "Journal has aborted";
654 else
655 errstr = "Readonly filesystem";
656 break;
657 default:
658 /* If the caller passed in an extra buffer for unknown
659 * errors, textualise them now. Else we just return
660 * NULL. */
661 if (nbuf) {
662 /* Check for truncated error codes... */
663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
664 errstr = nbuf;
665 }
666 break;
667 }
668
669 return errstr;
670}
671
672/* __ext4_std_error decodes expected errors from journaling functions
673 * automatically and invokes the appropriate error response. */
674
675void __ext4_std_error(struct super_block *sb, const char *function,
676 unsigned int line, int errno)
677{
678 char nbuf[16];
679 const char *errstr;
680
681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
682 return;
683
684 /* Special case: if the error is EROFS, and we're not already
685 * inside a transaction, then there's really no point in logging
686 * an error. */
687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
688 return;
689
690 if (ext4_error_ratelimit(sb)) {
691 errstr = ext4_decode_error(sb, errno, nbuf);
692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
693 sb->s_id, function, line, errstr);
694 }
695
696 save_error_info(sb, -errno, 0, 0, function, line);
697 ext4_handle_error(sb);
698}
699
700/*
701 * ext4_abort is a much stronger failure handler than ext4_error. The
702 * abort function may be used to deal with unrecoverable failures such
703 * as journal IO errors or ENOMEM at a critical moment in log management.
704 *
705 * We unconditionally force the filesystem into an ABORT|READONLY state,
706 * unless the error response on the fs has been set to panic in which
707 * case we take the easy way out and panic immediately.
708 */
709
710void __ext4_abort(struct super_block *sb, const char *function,
711 unsigned int line, int error, const char *fmt, ...)
712{
713 struct va_format vaf;
714 va_list args;
715
716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
717 return;
718
719 save_error_info(sb, error, 0, 0, function, line);
720 va_start(args, fmt);
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
724 sb->s_id, function, line, &vaf);
725 va_end(args);
726
727 if (sb_rdonly(sb) == 0) {
728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
730 /*
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
733 */
734 smp_wmb();
735 sb->s_flags |= SB_RDONLY;
736 if (EXT4_SB(sb)->s_journal)
737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
738 }
739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
740 if (EXT4_SB(sb)->s_journal &&
741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
742 return;
743 panic("EXT4-fs panic from previous error\n");
744 }
745}
746
747void __ext4_msg(struct super_block *sb,
748 const char *prefix, const char *fmt, ...)
749{
750 struct va_format vaf;
751 va_list args;
752
753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
760 va_end(args);
761}
762
763#define ext4_warning_ratelimit(sb) \
764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
765 "EXT4-fs warning")
766
767void __ext4_warning(struct super_block *sb, const char *function,
768 unsigned int line, const char *fmt, ...)
769{
770 struct va_format vaf;
771 va_list args;
772
773 if (!ext4_warning_ratelimit(sb))
774 return;
775
776 va_start(args, fmt);
777 vaf.fmt = fmt;
778 vaf.va = &args;
779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
780 sb->s_id, function, line, &vaf);
781 va_end(args);
782}
783
784void __ext4_warning_inode(const struct inode *inode, const char *function,
785 unsigned int line, const char *fmt, ...)
786{
787 struct va_format vaf;
788 va_list args;
789
790 if (!ext4_warning_ratelimit(inode->i_sb))
791 return;
792
793 va_start(args, fmt);
794 vaf.fmt = fmt;
795 vaf.va = &args;
796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
798 function, line, inode->i_ino, current->comm, &vaf);
799 va_end(args);
800}
801
802void __ext4_grp_locked_error(const char *function, unsigned int line,
803 struct super_block *sb, ext4_group_t grp,
804 unsigned long ino, ext4_fsblk_t block,
805 const char *fmt, ...)
806__releases(bitlock)
807__acquires(bitlock)
808{
809 struct va_format vaf;
810 va_list args;
811
812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
813 return;
814
815 trace_ext4_error(sb, function, line);
816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
817
818 if (ext4_error_ratelimit(sb)) {
819 va_start(args, fmt);
820 vaf.fmt = fmt;
821 vaf.va = &args;
822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
823 sb->s_id, function, line, grp);
824 if (ino)
825 printk(KERN_CONT "inode %lu: ", ino);
826 if (block)
827 printk(KERN_CONT "block %llu:",
828 (unsigned long long) block);
829 printk(KERN_CONT "%pV\n", &vaf);
830 va_end(args);
831 }
832
833 if (test_opt(sb, WARN_ON_ERROR))
834 WARN_ON_ONCE(1);
835
836 if (test_opt(sb, ERRORS_CONT)) {
837 ext4_commit_super(sb, 0);
838 return;
839 }
840
841 ext4_unlock_group(sb, grp);
842 ext4_commit_super(sb, 1);
843 ext4_handle_error(sb);
844 /*
845 * We only get here in the ERRORS_RO case; relocking the group
846 * may be dangerous, but nothing bad will happen since the
847 * filesystem will have already been marked read/only and the
848 * journal has been aborted. We return 1 as a hint to callers
849 * who might what to use the return value from
850 * ext4_grp_locked_error() to distinguish between the
851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
852 * aggressively from the ext4 function in question, with a
853 * more appropriate error code.
854 */
855 ext4_lock_group(sb, grp);
856 return;
857}
858
859void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
860 ext4_group_t group,
861 unsigned int flags)
862{
863 struct ext4_sb_info *sbi = EXT4_SB(sb);
864 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
866 int ret;
867
868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
870 &grp->bb_state);
871 if (!ret)
872 percpu_counter_sub(&sbi->s_freeclusters_counter,
873 grp->bb_free);
874 }
875
876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
878 &grp->bb_state);
879 if (!ret && gdp) {
880 int count;
881
882 count = ext4_free_inodes_count(sb, gdp);
883 percpu_counter_sub(&sbi->s_freeinodes_counter,
884 count);
885 }
886 }
887}
888
889void ext4_update_dynamic_rev(struct super_block *sb)
890{
891 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
892
893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
894 return;
895
896 ext4_warning(sb,
897 "updating to rev %d because of new feature flag, "
898 "running e2fsck is recommended",
899 EXT4_DYNAMIC_REV);
900
901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
904 /* leave es->s_feature_*compat flags alone */
905 /* es->s_uuid will be set by e2fsck if empty */
906
907 /*
908 * The rest of the superblock fields should be zero, and if not it
909 * means they are likely already in use, so leave them alone. We
910 * can leave it up to e2fsck to clean up any inconsistencies there.
911 */
912}
913
914/*
915 * Open the external journal device
916 */
917static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
918{
919 struct block_device *bdev;
920
921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
922 if (IS_ERR(bdev))
923 goto fail;
924 return bdev;
925
926fail:
927 ext4_msg(sb, KERN_ERR,
928 "failed to open journal device unknown-block(%u,%u) %ld",
929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
930 return NULL;
931}
932
933/*
934 * Release the journal device
935 */
936static void ext4_blkdev_put(struct block_device *bdev)
937{
938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
939}
940
941static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
942{
943 struct block_device *bdev;
944 bdev = sbi->journal_bdev;
945 if (bdev) {
946 ext4_blkdev_put(bdev);
947 sbi->journal_bdev = NULL;
948 }
949}
950
951static inline struct inode *orphan_list_entry(struct list_head *l)
952{
953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
954}
955
956static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
957{
958 struct list_head *l;
959
960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
961 le32_to_cpu(sbi->s_es->s_last_orphan));
962
963 printk(KERN_ERR "sb_info orphan list:\n");
964 list_for_each(l, &sbi->s_orphan) {
965 struct inode *inode = orphan_list_entry(l);
966 printk(KERN_ERR " "
967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
968 inode->i_sb->s_id, inode->i_ino, inode,
969 inode->i_mode, inode->i_nlink,
970 NEXT_ORPHAN(inode));
971 }
972}
973
974#ifdef CONFIG_QUOTA
975static int ext4_quota_off(struct super_block *sb, int type);
976
977static inline void ext4_quota_off_umount(struct super_block *sb)
978{
979 int type;
980
981 /* Use our quota_off function to clear inode flags etc. */
982 for (type = 0; type < EXT4_MAXQUOTAS; type++)
983 ext4_quota_off(sb, type);
984}
985
986/*
987 * This is a helper function which is used in the mount/remount
988 * codepaths (which holds s_umount) to fetch the quota file name.
989 */
990static inline char *get_qf_name(struct super_block *sb,
991 struct ext4_sb_info *sbi,
992 int type)
993{
994 return rcu_dereference_protected(sbi->s_qf_names[type],
995 lockdep_is_held(&sb->s_umount));
996}
997#else
998static inline void ext4_quota_off_umount(struct super_block *sb)
999{
1000}
1001#endif
1002
1003static void ext4_put_super(struct super_block *sb)
1004{
1005 struct ext4_sb_info *sbi = EXT4_SB(sb);
1006 struct ext4_super_block *es = sbi->s_es;
1007 struct buffer_head **group_desc;
1008 struct flex_groups **flex_groups;
1009 int aborted = 0;
1010 int i, err;
1011
1012 ext4_unregister_li_request(sb);
1013 ext4_quota_off_umount(sb);
1014
1015 destroy_workqueue(sbi->rsv_conversion_wq);
1016
1017 /*
1018 * Unregister sysfs before destroying jbd2 journal.
1019 * Since we could still access attr_journal_task attribute via sysfs
1020 * path which could have sbi->s_journal->j_task as NULL
1021 */
1022 ext4_unregister_sysfs(sb);
1023
1024 if (sbi->s_journal) {
1025 aborted = is_journal_aborted(sbi->s_journal);
1026 err = jbd2_journal_destroy(sbi->s_journal);
1027 sbi->s_journal = NULL;
1028 if ((err < 0) && !aborted) {
1029 ext4_abort(sb, -err, "Couldn't clean up the journal");
1030 }
1031 }
1032
1033 ext4_es_unregister_shrinker(sbi);
1034 del_timer_sync(&sbi->s_err_report);
1035 ext4_release_system_zone(sb);
1036 ext4_mb_release(sb);
1037 ext4_ext_release(sb);
1038
1039 if (!sb_rdonly(sb) && !aborted) {
1040 ext4_clear_feature_journal_needs_recovery(sb);
1041 es->s_state = cpu_to_le16(sbi->s_mount_state);
1042 }
1043 if (!sb_rdonly(sb))
1044 ext4_commit_super(sb, 1);
1045
1046 rcu_read_lock();
1047 group_desc = rcu_dereference(sbi->s_group_desc);
1048 for (i = 0; i < sbi->s_gdb_count; i++)
1049 brelse(group_desc[i]);
1050 kvfree(group_desc);
1051 flex_groups = rcu_dereference(sbi->s_flex_groups);
1052 if (flex_groups) {
1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1054 kvfree(flex_groups[i]);
1055 kvfree(flex_groups);
1056 }
1057 rcu_read_unlock();
1058 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1059 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1060 percpu_counter_destroy(&sbi->s_dirs_counter);
1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1062 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1063#ifdef CONFIG_QUOTA
1064 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1065 kfree(get_qf_name(sb, sbi, i));
1066#endif
1067
1068 /* Debugging code just in case the in-memory inode orphan list
1069 * isn't empty. The on-disk one can be non-empty if we've
1070 * detected an error and taken the fs readonly, but the
1071 * in-memory list had better be clean by this point. */
1072 if (!list_empty(&sbi->s_orphan))
1073 dump_orphan_list(sb, sbi);
1074 J_ASSERT(list_empty(&sbi->s_orphan));
1075
1076 sync_blockdev(sb->s_bdev);
1077 invalidate_bdev(sb->s_bdev);
1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1079 /*
1080 * Invalidate the journal device's buffers. We don't want them
1081 * floating about in memory - the physical journal device may
1082 * hotswapped, and it breaks the `ro-after' testing code.
1083 */
1084 sync_blockdev(sbi->journal_bdev);
1085 invalidate_bdev(sbi->journal_bdev);
1086 ext4_blkdev_remove(sbi);
1087 }
1088
1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1090 sbi->s_ea_inode_cache = NULL;
1091
1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1093 sbi->s_ea_block_cache = NULL;
1094
1095 if (sbi->s_mmp_tsk)
1096 kthread_stop(sbi->s_mmp_tsk);
1097 brelse(sbi->s_sbh);
1098 sb->s_fs_info = NULL;
1099 /*
1100 * Now that we are completely done shutting down the
1101 * superblock, we need to actually destroy the kobject.
1102 */
1103 kobject_put(&sbi->s_kobj);
1104 wait_for_completion(&sbi->s_kobj_unregister);
1105 if (sbi->s_chksum_driver)
1106 crypto_free_shash(sbi->s_chksum_driver);
1107 kfree(sbi->s_blockgroup_lock);
1108 fs_put_dax(sbi->s_daxdev);
1109 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
1109#ifdef CONFIG_UNICODE
1110 utf8_unload(sbi->s_encoding);
1111#endif
1112 kfree(sbi);
1113}
1114
1115static struct kmem_cache *ext4_inode_cachep;
1116
1117/*
1118 * Called inside transaction, so use GFP_NOFS
1119 */
1120static struct inode *ext4_alloc_inode(struct super_block *sb)
1121{
1122 struct ext4_inode_info *ei;
1123
1124 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1125 if (!ei)
1126 return NULL;
1127
1128 inode_set_iversion(&ei->vfs_inode, 1);
1129 spin_lock_init(&ei->i_raw_lock);
1130 INIT_LIST_HEAD(&ei->i_prealloc_list);
1131 spin_lock_init(&ei->i_prealloc_lock);
1132 ext4_es_init_tree(&ei->i_es_tree);
1133 rwlock_init(&ei->i_es_lock);
1134 INIT_LIST_HEAD(&ei->i_es_list);
1135 ei->i_es_all_nr = 0;
1136 ei->i_es_shk_nr = 0;
1137 ei->i_es_shrink_lblk = 0;
1138 ei->i_reserved_data_blocks = 0;
1139 spin_lock_init(&(ei->i_block_reservation_lock));
1140 ext4_init_pending_tree(&ei->i_pending_tree);
1141#ifdef CONFIG_QUOTA
1142 ei->i_reserved_quota = 0;
1143 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1144#endif
1145 ei->jinode = NULL;
1146 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1147 spin_lock_init(&ei->i_completed_io_lock);
1148 ei->i_sync_tid = 0;
1149 ei->i_datasync_tid = 0;
1150 atomic_set(&ei->i_unwritten, 0);
1151 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1152 return &ei->vfs_inode;
1153}
1154
1155static int ext4_drop_inode(struct inode *inode)
1156{
1157 int drop = generic_drop_inode(inode);
1158
1159 if (!drop)
1160 drop = fscrypt_drop_inode(inode);
1161
1162 trace_ext4_drop_inode(inode, drop);
1163 return drop;
1164}
1165
1166static void ext4_free_in_core_inode(struct inode *inode)
1167{
1168 fscrypt_free_inode(inode);
1169 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1170}
1171
1172static void ext4_destroy_inode(struct inode *inode)
1173{
1174 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1175 ext4_msg(inode->i_sb, KERN_ERR,
1176 "Inode %lu (%p): orphan list check failed!",
1177 inode->i_ino, EXT4_I(inode));
1178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1179 EXT4_I(inode), sizeof(struct ext4_inode_info),
1180 true);
1181 dump_stack();
1182 }
1183}
1184
1185static void init_once(void *foo)
1186{
1187 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1188
1189 INIT_LIST_HEAD(&ei->i_orphan);
1190 init_rwsem(&ei->xattr_sem);
1191 init_rwsem(&ei->i_data_sem);
1192 init_rwsem(&ei->i_mmap_sem);
1193 inode_init_once(&ei->vfs_inode);
1194}
1195
1196static int __init init_inodecache(void)
1197{
1198 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1199 sizeof(struct ext4_inode_info), 0,
1200 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1201 SLAB_ACCOUNT),
1202 offsetof(struct ext4_inode_info, i_data),
1203 sizeof_field(struct ext4_inode_info, i_data),
1204 init_once);
1205 if (ext4_inode_cachep == NULL)
1206 return -ENOMEM;
1207 return 0;
1208}
1209
1210static void destroy_inodecache(void)
1211{
1212 /*
1213 * Make sure all delayed rcu free inodes are flushed before we
1214 * destroy cache.
1215 */
1216 rcu_barrier();
1217 kmem_cache_destroy(ext4_inode_cachep);
1218}
1219
1220void ext4_clear_inode(struct inode *inode)
1221{
1222 invalidate_inode_buffers(inode);
1223 clear_inode(inode);
1224 ext4_discard_preallocations(inode);
1225 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1226 dquot_drop(inode);
1227 if (EXT4_I(inode)->jinode) {
1228 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1229 EXT4_I(inode)->jinode);
1230 jbd2_free_inode(EXT4_I(inode)->jinode);
1231 EXT4_I(inode)->jinode = NULL;
1232 }
1233 fscrypt_put_encryption_info(inode);
1234 fsverity_cleanup_inode(inode);
1235}
1236
1237static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1238 u64 ino, u32 generation)
1239{
1240 struct inode *inode;
1241
1242 /*
1243 * Currently we don't know the generation for parent directory, so
1244 * a generation of 0 means "accept any"
1245 */
1246 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1247 if (IS_ERR(inode))
1248 return ERR_CAST(inode);
1249 if (generation && inode->i_generation != generation) {
1250 iput(inode);
1251 return ERR_PTR(-ESTALE);
1252 }
1253
1254 return inode;
1255}
1256
1257static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1258 int fh_len, int fh_type)
1259{
1260 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1261 ext4_nfs_get_inode);
1262}
1263
1264static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1265 int fh_len, int fh_type)
1266{
1267 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1268 ext4_nfs_get_inode);
1269}
1270
1271static int ext4_nfs_commit_metadata(struct inode *inode)
1272{
1273 struct writeback_control wbc = {
1274 .sync_mode = WB_SYNC_ALL
1275 };
1276
1277 trace_ext4_nfs_commit_metadata(inode);
1278 return ext4_write_inode(inode, &wbc);
1279}
1280
1281/*
1282 * Try to release metadata pages (indirect blocks, directories) which are
1283 * mapped via the block device. Since these pages could have journal heads
1284 * which would prevent try_to_free_buffers() from freeing them, we must use
1285 * jbd2 layer's try_to_free_buffers() function to release them.
1286 */
1287static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1288 gfp_t wait)
1289{
1290 journal_t *journal = EXT4_SB(sb)->s_journal;
1291
1292 WARN_ON(PageChecked(page));
1293 if (!page_has_buffers(page))
1294 return 0;
1295 if (journal)
1296 return jbd2_journal_try_to_free_buffers(journal, page,
1297 wait & ~__GFP_DIRECT_RECLAIM);
1298 return try_to_free_buffers(page);
1299}
1300
1301#ifdef CONFIG_FS_ENCRYPTION
1302static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1303{
1304 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1305 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1306}
1307
1308static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1309 void *fs_data)
1310{
1311 handle_t *handle = fs_data;
1312 int res, res2, credits, retries = 0;
1313
1314 /*
1315 * Encrypting the root directory is not allowed because e2fsck expects
1316 * lost+found to exist and be unencrypted, and encrypting the root
1317 * directory would imply encrypting the lost+found directory as well as
1318 * the filename "lost+found" itself.
1319 */
1320 if (inode->i_ino == EXT4_ROOT_INO)
1321 return -EPERM;
1322
1323 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1324 return -EINVAL;
1325
1326 res = ext4_convert_inline_data(inode);
1327 if (res)
1328 return res;
1329
1330 /*
1331 * If a journal handle was specified, then the encryption context is
1332 * being set on a new inode via inheritance and is part of a larger
1333 * transaction to create the inode. Otherwise the encryption context is
1334 * being set on an existing inode in its own transaction. Only in the
1335 * latter case should the "retry on ENOSPC" logic be used.
1336 */
1337
1338 if (handle) {
1339 res = ext4_xattr_set_handle(handle, inode,
1340 EXT4_XATTR_INDEX_ENCRYPTION,
1341 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1342 ctx, len, 0);
1343 if (!res) {
1344 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1345 ext4_clear_inode_state(inode,
1346 EXT4_STATE_MAY_INLINE_DATA);
1347 /*
1348 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1349 * S_DAX may be disabled
1350 */
1351 ext4_set_inode_flags(inode);
1352 }
1353 return res;
1354 }
1355
1356 res = dquot_initialize(inode);
1357 if (res)
1358 return res;
1359retry:
1360 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1361 &credits);
1362 if (res)
1363 return res;
1364
1365 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1366 if (IS_ERR(handle))
1367 return PTR_ERR(handle);
1368
1369 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1370 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1371 ctx, len, 0);
1372 if (!res) {
1373 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1374 /*
1375 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1376 * S_DAX may be disabled
1377 */
1378 ext4_set_inode_flags(inode);
1379 res = ext4_mark_inode_dirty(handle, inode);
1380 if (res)
1381 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1382 }
1383 res2 = ext4_journal_stop(handle);
1384
1385 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1386 goto retry;
1387 if (!res)
1388 res = res2;
1389 return res;
1390}
1391
1110#ifdef CONFIG_UNICODE
1111 utf8_unload(sbi->s_encoding);
1112#endif
1113 kfree(sbi);
1114}
1115
1116static struct kmem_cache *ext4_inode_cachep;
1117
1118/*
1119 * Called inside transaction, so use GFP_NOFS
1120 */
1121static struct inode *ext4_alloc_inode(struct super_block *sb)
1122{
1123 struct ext4_inode_info *ei;
1124
1125 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1126 if (!ei)
1127 return NULL;
1128
1129 inode_set_iversion(&ei->vfs_inode, 1);
1130 spin_lock_init(&ei->i_raw_lock);
1131 INIT_LIST_HEAD(&ei->i_prealloc_list);
1132 spin_lock_init(&ei->i_prealloc_lock);
1133 ext4_es_init_tree(&ei->i_es_tree);
1134 rwlock_init(&ei->i_es_lock);
1135 INIT_LIST_HEAD(&ei->i_es_list);
1136 ei->i_es_all_nr = 0;
1137 ei->i_es_shk_nr = 0;
1138 ei->i_es_shrink_lblk = 0;
1139 ei->i_reserved_data_blocks = 0;
1140 spin_lock_init(&(ei->i_block_reservation_lock));
1141 ext4_init_pending_tree(&ei->i_pending_tree);
1142#ifdef CONFIG_QUOTA
1143 ei->i_reserved_quota = 0;
1144 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1145#endif
1146 ei->jinode = NULL;
1147 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1148 spin_lock_init(&ei->i_completed_io_lock);
1149 ei->i_sync_tid = 0;
1150 ei->i_datasync_tid = 0;
1151 atomic_set(&ei->i_unwritten, 0);
1152 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1153 return &ei->vfs_inode;
1154}
1155
1156static int ext4_drop_inode(struct inode *inode)
1157{
1158 int drop = generic_drop_inode(inode);
1159
1160 if (!drop)
1161 drop = fscrypt_drop_inode(inode);
1162
1163 trace_ext4_drop_inode(inode, drop);
1164 return drop;
1165}
1166
1167static void ext4_free_in_core_inode(struct inode *inode)
1168{
1169 fscrypt_free_inode(inode);
1170 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1171}
1172
1173static void ext4_destroy_inode(struct inode *inode)
1174{
1175 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1176 ext4_msg(inode->i_sb, KERN_ERR,
1177 "Inode %lu (%p): orphan list check failed!",
1178 inode->i_ino, EXT4_I(inode));
1179 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1180 EXT4_I(inode), sizeof(struct ext4_inode_info),
1181 true);
1182 dump_stack();
1183 }
1184}
1185
1186static void init_once(void *foo)
1187{
1188 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1189
1190 INIT_LIST_HEAD(&ei->i_orphan);
1191 init_rwsem(&ei->xattr_sem);
1192 init_rwsem(&ei->i_data_sem);
1193 init_rwsem(&ei->i_mmap_sem);
1194 inode_init_once(&ei->vfs_inode);
1195}
1196
1197static int __init init_inodecache(void)
1198{
1199 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1200 sizeof(struct ext4_inode_info), 0,
1201 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1202 SLAB_ACCOUNT),
1203 offsetof(struct ext4_inode_info, i_data),
1204 sizeof_field(struct ext4_inode_info, i_data),
1205 init_once);
1206 if (ext4_inode_cachep == NULL)
1207 return -ENOMEM;
1208 return 0;
1209}
1210
1211static void destroy_inodecache(void)
1212{
1213 /*
1214 * Make sure all delayed rcu free inodes are flushed before we
1215 * destroy cache.
1216 */
1217 rcu_barrier();
1218 kmem_cache_destroy(ext4_inode_cachep);
1219}
1220
1221void ext4_clear_inode(struct inode *inode)
1222{
1223 invalidate_inode_buffers(inode);
1224 clear_inode(inode);
1225 ext4_discard_preallocations(inode);
1226 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1227 dquot_drop(inode);
1228 if (EXT4_I(inode)->jinode) {
1229 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1230 EXT4_I(inode)->jinode);
1231 jbd2_free_inode(EXT4_I(inode)->jinode);
1232 EXT4_I(inode)->jinode = NULL;
1233 }
1234 fscrypt_put_encryption_info(inode);
1235 fsverity_cleanup_inode(inode);
1236}
1237
1238static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1239 u64 ino, u32 generation)
1240{
1241 struct inode *inode;
1242
1243 /*
1244 * Currently we don't know the generation for parent directory, so
1245 * a generation of 0 means "accept any"
1246 */
1247 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1248 if (IS_ERR(inode))
1249 return ERR_CAST(inode);
1250 if (generation && inode->i_generation != generation) {
1251 iput(inode);
1252 return ERR_PTR(-ESTALE);
1253 }
1254
1255 return inode;
1256}
1257
1258static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1259 int fh_len, int fh_type)
1260{
1261 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1262 ext4_nfs_get_inode);
1263}
1264
1265static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1266 int fh_len, int fh_type)
1267{
1268 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1269 ext4_nfs_get_inode);
1270}
1271
1272static int ext4_nfs_commit_metadata(struct inode *inode)
1273{
1274 struct writeback_control wbc = {
1275 .sync_mode = WB_SYNC_ALL
1276 };
1277
1278 trace_ext4_nfs_commit_metadata(inode);
1279 return ext4_write_inode(inode, &wbc);
1280}
1281
1282/*
1283 * Try to release metadata pages (indirect blocks, directories) which are
1284 * mapped via the block device. Since these pages could have journal heads
1285 * which would prevent try_to_free_buffers() from freeing them, we must use
1286 * jbd2 layer's try_to_free_buffers() function to release them.
1287 */
1288static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1289 gfp_t wait)
1290{
1291 journal_t *journal = EXT4_SB(sb)->s_journal;
1292
1293 WARN_ON(PageChecked(page));
1294 if (!page_has_buffers(page))
1295 return 0;
1296 if (journal)
1297 return jbd2_journal_try_to_free_buffers(journal, page,
1298 wait & ~__GFP_DIRECT_RECLAIM);
1299 return try_to_free_buffers(page);
1300}
1301
1302#ifdef CONFIG_FS_ENCRYPTION
1303static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1304{
1305 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1306 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1307}
1308
1309static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1310 void *fs_data)
1311{
1312 handle_t *handle = fs_data;
1313 int res, res2, credits, retries = 0;
1314
1315 /*
1316 * Encrypting the root directory is not allowed because e2fsck expects
1317 * lost+found to exist and be unencrypted, and encrypting the root
1318 * directory would imply encrypting the lost+found directory as well as
1319 * the filename "lost+found" itself.
1320 */
1321 if (inode->i_ino == EXT4_ROOT_INO)
1322 return -EPERM;
1323
1324 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1325 return -EINVAL;
1326
1327 res = ext4_convert_inline_data(inode);
1328 if (res)
1329 return res;
1330
1331 /*
1332 * If a journal handle was specified, then the encryption context is
1333 * being set on a new inode via inheritance and is part of a larger
1334 * transaction to create the inode. Otherwise the encryption context is
1335 * being set on an existing inode in its own transaction. Only in the
1336 * latter case should the "retry on ENOSPC" logic be used.
1337 */
1338
1339 if (handle) {
1340 res = ext4_xattr_set_handle(handle, inode,
1341 EXT4_XATTR_INDEX_ENCRYPTION,
1342 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1343 ctx, len, 0);
1344 if (!res) {
1345 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1346 ext4_clear_inode_state(inode,
1347 EXT4_STATE_MAY_INLINE_DATA);
1348 /*
1349 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1350 * S_DAX may be disabled
1351 */
1352 ext4_set_inode_flags(inode);
1353 }
1354 return res;
1355 }
1356
1357 res = dquot_initialize(inode);
1358 if (res)
1359 return res;
1360retry:
1361 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1362 &credits);
1363 if (res)
1364 return res;
1365
1366 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1367 if (IS_ERR(handle))
1368 return PTR_ERR(handle);
1369
1370 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1371 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1372 ctx, len, 0);
1373 if (!res) {
1374 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1375 /*
1376 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1377 * S_DAX may be disabled
1378 */
1379 ext4_set_inode_flags(inode);
1380 res = ext4_mark_inode_dirty(handle, inode);
1381 if (res)
1382 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1383 }
1384 res2 = ext4_journal_stop(handle);
1385
1386 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387 goto retry;
1388 if (!res)
1389 res = res2;
1390 return res;
1391}
1392
1392static bool ext4_dummy_context(struct inode *inode)
1393static const union fscrypt_context *
1394ext4_get_dummy_context(struct super_block *sb)
1393{
1395{
1394 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1396 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx;
1395}
1396
1397static bool ext4_has_stable_inodes(struct super_block *sb)
1398{
1399 return ext4_has_feature_stable_inodes(sb);
1400}
1401
1402static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1403 int *ino_bits_ret, int *lblk_bits_ret)
1404{
1405 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1406 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1407}
1408
1409static const struct fscrypt_operations ext4_cryptops = {
1410 .key_prefix = "ext4:",
1411 .get_context = ext4_get_context,
1412 .set_context = ext4_set_context,
1397}
1398
1399static bool ext4_has_stable_inodes(struct super_block *sb)
1400{
1401 return ext4_has_feature_stable_inodes(sb);
1402}
1403
1404static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1405 int *ino_bits_ret, int *lblk_bits_ret)
1406{
1407 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1408 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1409}
1410
1411static const struct fscrypt_operations ext4_cryptops = {
1412 .key_prefix = "ext4:",
1413 .get_context = ext4_get_context,
1414 .set_context = ext4_set_context,
1413 .dummy_context = ext4_dummy_context,
1415 .get_dummy_context = ext4_get_dummy_context,
1414 .empty_dir = ext4_empty_dir,
1415 .max_namelen = EXT4_NAME_LEN,
1416 .has_stable_inodes = ext4_has_stable_inodes,
1417 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1418};
1419#endif
1420
1421#ifdef CONFIG_QUOTA
1422static const char * const quotatypes[] = INITQFNAMES;
1423#define QTYPE2NAME(t) (quotatypes[t])
1424
1425static int ext4_write_dquot(struct dquot *dquot);
1426static int ext4_acquire_dquot(struct dquot *dquot);
1427static int ext4_release_dquot(struct dquot *dquot);
1428static int ext4_mark_dquot_dirty(struct dquot *dquot);
1429static int ext4_write_info(struct super_block *sb, int type);
1430static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1431 const struct path *path);
1432static int ext4_quota_on_mount(struct super_block *sb, int type);
1433static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1434 size_t len, loff_t off);
1435static ssize_t ext4_quota_write(struct super_block *sb, int type,
1436 const char *data, size_t len, loff_t off);
1437static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1438 unsigned int flags);
1439static int ext4_enable_quotas(struct super_block *sb);
1440
1441static struct dquot **ext4_get_dquots(struct inode *inode)
1442{
1443 return EXT4_I(inode)->i_dquot;
1444}
1445
1446static const struct dquot_operations ext4_quota_operations = {
1447 .get_reserved_space = ext4_get_reserved_space,
1448 .write_dquot = ext4_write_dquot,
1449 .acquire_dquot = ext4_acquire_dquot,
1450 .release_dquot = ext4_release_dquot,
1451 .mark_dirty = ext4_mark_dquot_dirty,
1452 .write_info = ext4_write_info,
1453 .alloc_dquot = dquot_alloc,
1454 .destroy_dquot = dquot_destroy,
1455 .get_projid = ext4_get_projid,
1456 .get_inode_usage = ext4_get_inode_usage,
1457 .get_next_id = dquot_get_next_id,
1458};
1459
1460static const struct quotactl_ops ext4_qctl_operations = {
1461 .quota_on = ext4_quota_on,
1462 .quota_off = ext4_quota_off,
1463 .quota_sync = dquot_quota_sync,
1464 .get_state = dquot_get_state,
1465 .set_info = dquot_set_dqinfo,
1466 .get_dqblk = dquot_get_dqblk,
1467 .set_dqblk = dquot_set_dqblk,
1468 .get_nextdqblk = dquot_get_next_dqblk,
1469};
1470#endif
1471
1472static const struct super_operations ext4_sops = {
1473 .alloc_inode = ext4_alloc_inode,
1474 .free_inode = ext4_free_in_core_inode,
1475 .destroy_inode = ext4_destroy_inode,
1476 .write_inode = ext4_write_inode,
1477 .dirty_inode = ext4_dirty_inode,
1478 .drop_inode = ext4_drop_inode,
1479 .evict_inode = ext4_evict_inode,
1480 .put_super = ext4_put_super,
1481 .sync_fs = ext4_sync_fs,
1482 .freeze_fs = ext4_freeze,
1483 .unfreeze_fs = ext4_unfreeze,
1484 .statfs = ext4_statfs,
1485 .remount_fs = ext4_remount,
1486 .show_options = ext4_show_options,
1487#ifdef CONFIG_QUOTA
1488 .quota_read = ext4_quota_read,
1489 .quota_write = ext4_quota_write,
1490 .get_dquots = ext4_get_dquots,
1491#endif
1492 .bdev_try_to_free_page = bdev_try_to_free_page,
1493};
1494
1495static const struct export_operations ext4_export_ops = {
1496 .fh_to_dentry = ext4_fh_to_dentry,
1497 .fh_to_parent = ext4_fh_to_parent,
1498 .get_parent = ext4_get_parent,
1499 .commit_metadata = ext4_nfs_commit_metadata,
1500};
1501
1502enum {
1503 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1504 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1505 Opt_nouid32, Opt_debug, Opt_removed,
1506 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1507 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1508 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1509 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1510 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1511 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1512 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1513 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1514 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1515 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1516 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1517 Opt_nowarn_on_error, Opt_mblk_io_submit,
1518 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1519 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1520 Opt_inode_readahead_blks, Opt_journal_ioprio,
1521 Opt_dioread_nolock, Opt_dioread_lock,
1522 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1523 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1524};
1525
1526static const match_table_t tokens = {
1527 {Opt_bsd_df, "bsddf"},
1528 {Opt_minix_df, "minixdf"},
1529 {Opt_grpid, "grpid"},
1530 {Opt_grpid, "bsdgroups"},
1531 {Opt_nogrpid, "nogrpid"},
1532 {Opt_nogrpid, "sysvgroups"},
1533 {Opt_resgid, "resgid=%u"},
1534 {Opt_resuid, "resuid=%u"},
1535 {Opt_sb, "sb=%u"},
1536 {Opt_err_cont, "errors=continue"},
1537 {Opt_err_panic, "errors=panic"},
1538 {Opt_err_ro, "errors=remount-ro"},
1539 {Opt_nouid32, "nouid32"},
1540 {Opt_debug, "debug"},
1541 {Opt_removed, "oldalloc"},
1542 {Opt_removed, "orlov"},
1543 {Opt_user_xattr, "user_xattr"},
1544 {Opt_nouser_xattr, "nouser_xattr"},
1545 {Opt_acl, "acl"},
1546 {Opt_noacl, "noacl"},
1547 {Opt_noload, "norecovery"},
1548 {Opt_noload, "noload"},
1549 {Opt_removed, "nobh"},
1550 {Opt_removed, "bh"},
1551 {Opt_commit, "commit=%u"},
1552 {Opt_min_batch_time, "min_batch_time=%u"},
1553 {Opt_max_batch_time, "max_batch_time=%u"},
1554 {Opt_journal_dev, "journal_dev=%u"},
1555 {Opt_journal_path, "journal_path=%s"},
1556 {Opt_journal_checksum, "journal_checksum"},
1557 {Opt_nojournal_checksum, "nojournal_checksum"},
1558 {Opt_journal_async_commit, "journal_async_commit"},
1559 {Opt_abort, "abort"},
1560 {Opt_data_journal, "data=journal"},
1561 {Opt_data_ordered, "data=ordered"},
1562 {Opt_data_writeback, "data=writeback"},
1563 {Opt_data_err_abort, "data_err=abort"},
1564 {Opt_data_err_ignore, "data_err=ignore"},
1565 {Opt_offusrjquota, "usrjquota="},
1566 {Opt_usrjquota, "usrjquota=%s"},
1567 {Opt_offgrpjquota, "grpjquota="},
1568 {Opt_grpjquota, "grpjquota=%s"},
1569 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1570 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1571 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1572 {Opt_grpquota, "grpquota"},
1573 {Opt_noquota, "noquota"},
1574 {Opt_quota, "quota"},
1575 {Opt_usrquota, "usrquota"},
1576 {Opt_prjquota, "prjquota"},
1577 {Opt_barrier, "barrier=%u"},
1578 {Opt_barrier, "barrier"},
1579 {Opt_nobarrier, "nobarrier"},
1580 {Opt_i_version, "i_version"},
1581 {Opt_dax, "dax"},
1582 {Opt_stripe, "stripe=%u"},
1583 {Opt_delalloc, "delalloc"},
1584 {Opt_warn_on_error, "warn_on_error"},
1585 {Opt_nowarn_on_error, "nowarn_on_error"},
1586 {Opt_lazytime, "lazytime"},
1587 {Opt_nolazytime, "nolazytime"},
1588 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1589 {Opt_nodelalloc, "nodelalloc"},
1590 {Opt_removed, "mblk_io_submit"},
1591 {Opt_removed, "nomblk_io_submit"},
1592 {Opt_block_validity, "block_validity"},
1593 {Opt_noblock_validity, "noblock_validity"},
1594 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1595 {Opt_journal_ioprio, "journal_ioprio=%u"},
1596 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1597 {Opt_auto_da_alloc, "auto_da_alloc"},
1598 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1599 {Opt_dioread_nolock, "dioread_nolock"},
1600 {Opt_dioread_lock, "nodioread_nolock"},
1601 {Opt_dioread_lock, "dioread_lock"},
1602 {Opt_discard, "discard"},
1603 {Opt_nodiscard, "nodiscard"},
1604 {Opt_init_itable, "init_itable=%u"},
1605 {Opt_init_itable, "init_itable"},
1606 {Opt_noinit_itable, "noinit_itable"},
1607 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1416 .empty_dir = ext4_empty_dir,
1417 .max_namelen = EXT4_NAME_LEN,
1418 .has_stable_inodes = ext4_has_stable_inodes,
1419 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1420};
1421#endif
1422
1423#ifdef CONFIG_QUOTA
1424static const char * const quotatypes[] = INITQFNAMES;
1425#define QTYPE2NAME(t) (quotatypes[t])
1426
1427static int ext4_write_dquot(struct dquot *dquot);
1428static int ext4_acquire_dquot(struct dquot *dquot);
1429static int ext4_release_dquot(struct dquot *dquot);
1430static int ext4_mark_dquot_dirty(struct dquot *dquot);
1431static int ext4_write_info(struct super_block *sb, int type);
1432static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1433 const struct path *path);
1434static int ext4_quota_on_mount(struct super_block *sb, int type);
1435static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1436 size_t len, loff_t off);
1437static ssize_t ext4_quota_write(struct super_block *sb, int type,
1438 const char *data, size_t len, loff_t off);
1439static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1440 unsigned int flags);
1441static int ext4_enable_quotas(struct super_block *sb);
1442
1443static struct dquot **ext4_get_dquots(struct inode *inode)
1444{
1445 return EXT4_I(inode)->i_dquot;
1446}
1447
1448static const struct dquot_operations ext4_quota_operations = {
1449 .get_reserved_space = ext4_get_reserved_space,
1450 .write_dquot = ext4_write_dquot,
1451 .acquire_dquot = ext4_acquire_dquot,
1452 .release_dquot = ext4_release_dquot,
1453 .mark_dirty = ext4_mark_dquot_dirty,
1454 .write_info = ext4_write_info,
1455 .alloc_dquot = dquot_alloc,
1456 .destroy_dquot = dquot_destroy,
1457 .get_projid = ext4_get_projid,
1458 .get_inode_usage = ext4_get_inode_usage,
1459 .get_next_id = dquot_get_next_id,
1460};
1461
1462static const struct quotactl_ops ext4_qctl_operations = {
1463 .quota_on = ext4_quota_on,
1464 .quota_off = ext4_quota_off,
1465 .quota_sync = dquot_quota_sync,
1466 .get_state = dquot_get_state,
1467 .set_info = dquot_set_dqinfo,
1468 .get_dqblk = dquot_get_dqblk,
1469 .set_dqblk = dquot_set_dqblk,
1470 .get_nextdqblk = dquot_get_next_dqblk,
1471};
1472#endif
1473
1474static const struct super_operations ext4_sops = {
1475 .alloc_inode = ext4_alloc_inode,
1476 .free_inode = ext4_free_in_core_inode,
1477 .destroy_inode = ext4_destroy_inode,
1478 .write_inode = ext4_write_inode,
1479 .dirty_inode = ext4_dirty_inode,
1480 .drop_inode = ext4_drop_inode,
1481 .evict_inode = ext4_evict_inode,
1482 .put_super = ext4_put_super,
1483 .sync_fs = ext4_sync_fs,
1484 .freeze_fs = ext4_freeze,
1485 .unfreeze_fs = ext4_unfreeze,
1486 .statfs = ext4_statfs,
1487 .remount_fs = ext4_remount,
1488 .show_options = ext4_show_options,
1489#ifdef CONFIG_QUOTA
1490 .quota_read = ext4_quota_read,
1491 .quota_write = ext4_quota_write,
1492 .get_dquots = ext4_get_dquots,
1493#endif
1494 .bdev_try_to_free_page = bdev_try_to_free_page,
1495};
1496
1497static const struct export_operations ext4_export_ops = {
1498 .fh_to_dentry = ext4_fh_to_dentry,
1499 .fh_to_parent = ext4_fh_to_parent,
1500 .get_parent = ext4_get_parent,
1501 .commit_metadata = ext4_nfs_commit_metadata,
1502};
1503
1504enum {
1505 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1506 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1507 Opt_nouid32, Opt_debug, Opt_removed,
1508 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1509 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1510 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1511 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1512 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1513 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1514 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1515 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1516 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1517 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1518 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1519 Opt_nowarn_on_error, Opt_mblk_io_submit,
1520 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1521 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1522 Opt_inode_readahead_blks, Opt_journal_ioprio,
1523 Opt_dioread_nolock, Opt_dioread_lock,
1524 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1525 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1526};
1527
1528static const match_table_t tokens = {
1529 {Opt_bsd_df, "bsddf"},
1530 {Opt_minix_df, "minixdf"},
1531 {Opt_grpid, "grpid"},
1532 {Opt_grpid, "bsdgroups"},
1533 {Opt_nogrpid, "nogrpid"},
1534 {Opt_nogrpid, "sysvgroups"},
1535 {Opt_resgid, "resgid=%u"},
1536 {Opt_resuid, "resuid=%u"},
1537 {Opt_sb, "sb=%u"},
1538 {Opt_err_cont, "errors=continue"},
1539 {Opt_err_panic, "errors=panic"},
1540 {Opt_err_ro, "errors=remount-ro"},
1541 {Opt_nouid32, "nouid32"},
1542 {Opt_debug, "debug"},
1543 {Opt_removed, "oldalloc"},
1544 {Opt_removed, "orlov"},
1545 {Opt_user_xattr, "user_xattr"},
1546 {Opt_nouser_xattr, "nouser_xattr"},
1547 {Opt_acl, "acl"},
1548 {Opt_noacl, "noacl"},
1549 {Opt_noload, "norecovery"},
1550 {Opt_noload, "noload"},
1551 {Opt_removed, "nobh"},
1552 {Opt_removed, "bh"},
1553 {Opt_commit, "commit=%u"},
1554 {Opt_min_batch_time, "min_batch_time=%u"},
1555 {Opt_max_batch_time, "max_batch_time=%u"},
1556 {Opt_journal_dev, "journal_dev=%u"},
1557 {Opt_journal_path, "journal_path=%s"},
1558 {Opt_journal_checksum, "journal_checksum"},
1559 {Opt_nojournal_checksum, "nojournal_checksum"},
1560 {Opt_journal_async_commit, "journal_async_commit"},
1561 {Opt_abort, "abort"},
1562 {Opt_data_journal, "data=journal"},
1563 {Opt_data_ordered, "data=ordered"},
1564 {Opt_data_writeback, "data=writeback"},
1565 {Opt_data_err_abort, "data_err=abort"},
1566 {Opt_data_err_ignore, "data_err=ignore"},
1567 {Opt_offusrjquota, "usrjquota="},
1568 {Opt_usrjquota, "usrjquota=%s"},
1569 {Opt_offgrpjquota, "grpjquota="},
1570 {Opt_grpjquota, "grpjquota=%s"},
1571 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1572 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1573 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1574 {Opt_grpquota, "grpquota"},
1575 {Opt_noquota, "noquota"},
1576 {Opt_quota, "quota"},
1577 {Opt_usrquota, "usrquota"},
1578 {Opt_prjquota, "prjquota"},
1579 {Opt_barrier, "barrier=%u"},
1580 {Opt_barrier, "barrier"},
1581 {Opt_nobarrier, "nobarrier"},
1582 {Opt_i_version, "i_version"},
1583 {Opt_dax, "dax"},
1584 {Opt_stripe, "stripe=%u"},
1585 {Opt_delalloc, "delalloc"},
1586 {Opt_warn_on_error, "warn_on_error"},
1587 {Opt_nowarn_on_error, "nowarn_on_error"},
1588 {Opt_lazytime, "lazytime"},
1589 {Opt_nolazytime, "nolazytime"},
1590 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1591 {Opt_nodelalloc, "nodelalloc"},
1592 {Opt_removed, "mblk_io_submit"},
1593 {Opt_removed, "nomblk_io_submit"},
1594 {Opt_block_validity, "block_validity"},
1595 {Opt_noblock_validity, "noblock_validity"},
1596 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1597 {Opt_journal_ioprio, "journal_ioprio=%u"},
1598 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1599 {Opt_auto_da_alloc, "auto_da_alloc"},
1600 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1601 {Opt_dioread_nolock, "dioread_nolock"},
1602 {Opt_dioread_lock, "nodioread_nolock"},
1603 {Opt_dioread_lock, "dioread_lock"},
1604 {Opt_discard, "discard"},
1605 {Opt_nodiscard, "nodiscard"},
1606 {Opt_init_itable, "init_itable=%u"},
1607 {Opt_init_itable, "init_itable"},
1608 {Opt_noinit_itable, "noinit_itable"},
1609 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1610 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1608 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1609 {Opt_nombcache, "nombcache"},
1610 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1611 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1612 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1613 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1614 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1615 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1616 {Opt_err, NULL},
1617};
1618
1619static ext4_fsblk_t get_sb_block(void **data)
1620{
1621 ext4_fsblk_t sb_block;
1622 char *options = (char *) *data;
1623
1624 if (!options || strncmp(options, "sb=", 3) != 0)
1625 return 1; /* Default location */
1626
1627 options += 3;
1628 /* TODO: use simple_strtoll with >32bit ext4 */
1629 sb_block = simple_strtoul(options, &options, 0);
1630 if (*options && *options != ',') {
1631 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1632 (char *) *data);
1633 return 1;
1634 }
1635 if (*options == ',')
1636 options++;
1637 *data = (void *) options;
1638
1639 return sb_block;
1640}
1641
1642#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1643static const char deprecated_msg[] =
1644 "Mount option \"%s\" will be removed by %s\n"
1645 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1646
1647#ifdef CONFIG_QUOTA
1648static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1649{
1650 struct ext4_sb_info *sbi = EXT4_SB(sb);
1651 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1652 int ret = -1;
1653
1654 if (sb_any_quota_loaded(sb) && !old_qname) {
1655 ext4_msg(sb, KERN_ERR,
1656 "Cannot change journaled "
1657 "quota options when quota turned on");
1658 return -1;
1659 }
1660 if (ext4_has_feature_quota(sb)) {
1661 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1662 "ignored when QUOTA feature is enabled");
1663 return 1;
1664 }
1665 qname = match_strdup(args);
1666 if (!qname) {
1667 ext4_msg(sb, KERN_ERR,
1668 "Not enough memory for storing quotafile name");
1669 return -1;
1670 }
1671 if (old_qname) {
1672 if (strcmp(old_qname, qname) == 0)
1673 ret = 1;
1674 else
1675 ext4_msg(sb, KERN_ERR,
1676 "%s quota file already specified",
1677 QTYPE2NAME(qtype));
1678 goto errout;
1679 }
1680 if (strchr(qname, '/')) {
1681 ext4_msg(sb, KERN_ERR,
1682 "quotafile must be on filesystem root");
1683 goto errout;
1684 }
1685 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1686 set_opt(sb, QUOTA);
1687 return 1;
1688errout:
1689 kfree(qname);
1690 return ret;
1691}
1692
1693static int clear_qf_name(struct super_block *sb, int qtype)
1694{
1695
1696 struct ext4_sb_info *sbi = EXT4_SB(sb);
1697 char *old_qname = get_qf_name(sb, sbi, qtype);
1698
1699 if (sb_any_quota_loaded(sb) && old_qname) {
1700 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1701 " when quota turned on");
1702 return -1;
1703 }
1704 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1705 synchronize_rcu();
1706 kfree(old_qname);
1707 return 1;
1708}
1709#endif
1710
1711#define MOPT_SET 0x0001
1712#define MOPT_CLEAR 0x0002
1713#define MOPT_NOSUPPORT 0x0004
1714#define MOPT_EXPLICIT 0x0008
1715#define MOPT_CLEAR_ERR 0x0010
1716#define MOPT_GTE0 0x0020
1717#ifdef CONFIG_QUOTA
1718#define MOPT_Q 0
1719#define MOPT_QFMT 0x0040
1720#else
1721#define MOPT_Q MOPT_NOSUPPORT
1722#define MOPT_QFMT MOPT_NOSUPPORT
1723#endif
1724#define MOPT_DATAJ 0x0080
1725#define MOPT_NO_EXT2 0x0100
1726#define MOPT_NO_EXT3 0x0200
1727#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1728#define MOPT_STRING 0x0400
1729
1730static const struct mount_opts {
1731 int token;
1732 int mount_opt;
1733 int flags;
1734} ext4_mount_opts[] = {
1735 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1736 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1737 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1738 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1739 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1740 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1741 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1742 MOPT_EXT4_ONLY | MOPT_SET},
1743 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1744 MOPT_EXT4_ONLY | MOPT_CLEAR},
1745 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1746 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1747 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1748 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1749 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1750 MOPT_EXT4_ONLY | MOPT_CLEAR},
1751 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1752 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1753 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1754 MOPT_EXT4_ONLY | MOPT_CLEAR},
1755 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1756 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1757 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1758 EXT4_MOUNT_JOURNAL_CHECKSUM),
1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1760 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1761 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1762 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1763 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1764 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1765 MOPT_NO_EXT2},
1766 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1767 MOPT_NO_EXT2},
1768 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1769 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1770 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1771 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1772 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1773 {Opt_commit, 0, MOPT_GTE0},
1774 {Opt_max_batch_time, 0, MOPT_GTE0},
1775 {Opt_min_batch_time, 0, MOPT_GTE0},
1776 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1777 {Opt_init_itable, 0, MOPT_GTE0},
1778 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1779 {Opt_stripe, 0, MOPT_GTE0},
1780 {Opt_resuid, 0, MOPT_GTE0},
1781 {Opt_resgid, 0, MOPT_GTE0},
1782 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1783 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1784 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1785 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1786 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1787 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1788 MOPT_NO_EXT2 | MOPT_DATAJ},
1789 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1790 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1791#ifdef CONFIG_EXT4_FS_POSIX_ACL
1792 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1793 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1794#else
1795 {Opt_acl, 0, MOPT_NOSUPPORT},
1796 {Opt_noacl, 0, MOPT_NOSUPPORT},
1797#endif
1798 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1799 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1800 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1801 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1802 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1803 MOPT_SET | MOPT_Q},
1804 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1805 MOPT_SET | MOPT_Q},
1806 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1807 MOPT_SET | MOPT_Q},
1808 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1809 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1810 MOPT_CLEAR | MOPT_Q},
1811 {Opt_usrjquota, 0, MOPT_Q},
1812 {Opt_grpjquota, 0, MOPT_Q},
1813 {Opt_offusrjquota, 0, MOPT_Q},
1814 {Opt_offgrpjquota, 0, MOPT_Q},
1815 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1816 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1817 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1818 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1611 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1612 {Opt_nombcache, "nombcache"},
1613 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1614 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1615 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1616 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1617 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1618 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1619 {Opt_err, NULL},
1620};
1621
1622static ext4_fsblk_t get_sb_block(void **data)
1623{
1624 ext4_fsblk_t sb_block;
1625 char *options = (char *) *data;
1626
1627 if (!options || strncmp(options, "sb=", 3) != 0)
1628 return 1; /* Default location */
1629
1630 options += 3;
1631 /* TODO: use simple_strtoll with >32bit ext4 */
1632 sb_block = simple_strtoul(options, &options, 0);
1633 if (*options && *options != ',') {
1634 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1635 (char *) *data);
1636 return 1;
1637 }
1638 if (*options == ',')
1639 options++;
1640 *data = (void *) options;
1641
1642 return sb_block;
1643}
1644
1645#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1646static const char deprecated_msg[] =
1647 "Mount option \"%s\" will be removed by %s\n"
1648 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1649
1650#ifdef CONFIG_QUOTA
1651static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1652{
1653 struct ext4_sb_info *sbi = EXT4_SB(sb);
1654 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1655 int ret = -1;
1656
1657 if (sb_any_quota_loaded(sb) && !old_qname) {
1658 ext4_msg(sb, KERN_ERR,
1659 "Cannot change journaled "
1660 "quota options when quota turned on");
1661 return -1;
1662 }
1663 if (ext4_has_feature_quota(sb)) {
1664 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1665 "ignored when QUOTA feature is enabled");
1666 return 1;
1667 }
1668 qname = match_strdup(args);
1669 if (!qname) {
1670 ext4_msg(sb, KERN_ERR,
1671 "Not enough memory for storing quotafile name");
1672 return -1;
1673 }
1674 if (old_qname) {
1675 if (strcmp(old_qname, qname) == 0)
1676 ret = 1;
1677 else
1678 ext4_msg(sb, KERN_ERR,
1679 "%s quota file already specified",
1680 QTYPE2NAME(qtype));
1681 goto errout;
1682 }
1683 if (strchr(qname, '/')) {
1684 ext4_msg(sb, KERN_ERR,
1685 "quotafile must be on filesystem root");
1686 goto errout;
1687 }
1688 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1689 set_opt(sb, QUOTA);
1690 return 1;
1691errout:
1692 kfree(qname);
1693 return ret;
1694}
1695
1696static int clear_qf_name(struct super_block *sb, int qtype)
1697{
1698
1699 struct ext4_sb_info *sbi = EXT4_SB(sb);
1700 char *old_qname = get_qf_name(sb, sbi, qtype);
1701
1702 if (sb_any_quota_loaded(sb) && old_qname) {
1703 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1704 " when quota turned on");
1705 return -1;
1706 }
1707 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1708 synchronize_rcu();
1709 kfree(old_qname);
1710 return 1;
1711}
1712#endif
1713
1714#define MOPT_SET 0x0001
1715#define MOPT_CLEAR 0x0002
1716#define MOPT_NOSUPPORT 0x0004
1717#define MOPT_EXPLICIT 0x0008
1718#define MOPT_CLEAR_ERR 0x0010
1719#define MOPT_GTE0 0x0020
1720#ifdef CONFIG_QUOTA
1721#define MOPT_Q 0
1722#define MOPT_QFMT 0x0040
1723#else
1724#define MOPT_Q MOPT_NOSUPPORT
1725#define MOPT_QFMT MOPT_NOSUPPORT
1726#endif
1727#define MOPT_DATAJ 0x0080
1728#define MOPT_NO_EXT2 0x0100
1729#define MOPT_NO_EXT3 0x0200
1730#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1731#define MOPT_STRING 0x0400
1732
1733static const struct mount_opts {
1734 int token;
1735 int mount_opt;
1736 int flags;
1737} ext4_mount_opts[] = {
1738 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1739 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1740 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1741 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1742 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1743 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1744 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1745 MOPT_EXT4_ONLY | MOPT_SET},
1746 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1747 MOPT_EXT4_ONLY | MOPT_CLEAR},
1748 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1749 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1750 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1751 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1752 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1753 MOPT_EXT4_ONLY | MOPT_CLEAR},
1754 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1755 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1756 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1757 MOPT_EXT4_ONLY | MOPT_CLEAR},
1758 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1760 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1761 EXT4_MOUNT_JOURNAL_CHECKSUM),
1762 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1763 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1764 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1765 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1766 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1767 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1768 MOPT_NO_EXT2},
1769 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1770 MOPT_NO_EXT2},
1771 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1772 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1773 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1774 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1775 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1776 {Opt_commit, 0, MOPT_GTE0},
1777 {Opt_max_batch_time, 0, MOPT_GTE0},
1778 {Opt_min_batch_time, 0, MOPT_GTE0},
1779 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1780 {Opt_init_itable, 0, MOPT_GTE0},
1781 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1782 {Opt_stripe, 0, MOPT_GTE0},
1783 {Opt_resuid, 0, MOPT_GTE0},
1784 {Opt_resgid, 0, MOPT_GTE0},
1785 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1786 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1787 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1788 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1789 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1790 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1791 MOPT_NO_EXT2 | MOPT_DATAJ},
1792 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1793 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1794#ifdef CONFIG_EXT4_FS_POSIX_ACL
1795 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1796 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1797#else
1798 {Opt_acl, 0, MOPT_NOSUPPORT},
1799 {Opt_noacl, 0, MOPT_NOSUPPORT},
1800#endif
1801 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1802 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1803 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1804 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1805 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1806 MOPT_SET | MOPT_Q},
1807 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1808 MOPT_SET | MOPT_Q},
1809 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1810 MOPT_SET | MOPT_Q},
1811 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1812 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1813 MOPT_CLEAR | MOPT_Q},
1814 {Opt_usrjquota, 0, MOPT_Q},
1815 {Opt_grpjquota, 0, MOPT_Q},
1816 {Opt_offusrjquota, 0, MOPT_Q},
1817 {Opt_offgrpjquota, 0, MOPT_Q},
1818 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1819 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1820 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1821 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1819 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1822 {Opt_test_dummy_encryption, 0, MOPT_STRING},
1820 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1821 {Opt_err, 0, 0}
1822};
1823
1824#ifdef CONFIG_UNICODE
1825static const struct ext4_sb_encodings {
1826 __u16 magic;
1827 char *name;
1828 char *version;
1829} ext4_sb_encoding_map[] = {
1830 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1831};
1832
1833static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1834 const struct ext4_sb_encodings **encoding,
1835 __u16 *flags)
1836{
1837 __u16 magic = le16_to_cpu(es->s_encoding);
1838 int i;
1839
1840 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1841 if (magic == ext4_sb_encoding_map[i].magic)
1842 break;
1843
1844 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1845 return -EINVAL;
1846
1847 *encoding = &ext4_sb_encoding_map[i];
1848 *flags = le16_to_cpu(es->s_encoding_flags);
1849
1850 return 0;
1851}
1852#endif
1853
1823 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1824 {Opt_err, 0, 0}
1825};
1826
1827#ifdef CONFIG_UNICODE
1828static const struct ext4_sb_encodings {
1829 __u16 magic;
1830 char *name;
1831 char *version;
1832} ext4_sb_encoding_map[] = {
1833 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1834};
1835
1836static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1837 const struct ext4_sb_encodings **encoding,
1838 __u16 *flags)
1839{
1840 __u16 magic = le16_to_cpu(es->s_encoding);
1841 int i;
1842
1843 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1844 if (magic == ext4_sb_encoding_map[i].magic)
1845 break;
1846
1847 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1848 return -EINVAL;
1849
1850 *encoding = &ext4_sb_encoding_map[i];
1851 *flags = le16_to_cpu(es->s_encoding_flags);
1852
1853 return 0;
1854}
1855#endif
1856
1857static int ext4_set_test_dummy_encryption(struct super_block *sb,
1858 const char *opt,
1859 const substring_t *arg,
1860 bool is_remount)
1861{
1862#ifdef CONFIG_FS_ENCRYPTION
1863 struct ext4_sb_info *sbi = EXT4_SB(sb);
1864 int err;
1865
1866 /*
1867 * This mount option is just for testing, and it's not worthwhile to
1868 * implement the extra complexity (e.g. RCU protection) that would be
1869 * needed to allow it to be set or changed during remount. We do allow
1870 * it to be specified during remount, but only if there is no change.
1871 */
1872 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) {
1873 ext4_msg(sb, KERN_WARNING,
1874 "Can't set test_dummy_encryption on remount");
1875 return -1;
1876 }
1877 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx);
1878 if (err) {
1879 if (err == -EEXIST)
1880 ext4_msg(sb, KERN_WARNING,
1881 "Can't change test_dummy_encryption on remount");
1882 else if (err == -EINVAL)
1883 ext4_msg(sb, KERN_WARNING,
1884 "Value of option \"%s\" is unrecognized", opt);
1885 else
1886 ext4_msg(sb, KERN_WARNING,
1887 "Error processing option \"%s\" [%d]",
1888 opt, err);
1889 return -1;
1890 }
1891 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1892#else
1893 ext4_msg(sb, KERN_WARNING,
1894 "Test dummy encryption mount option ignored");
1895#endif
1896 return 1;
1897}
1898
1854static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1855 substring_t *args, unsigned long *journal_devnum,
1856 unsigned int *journal_ioprio, int is_remount)
1857{
1858 struct ext4_sb_info *sbi = EXT4_SB(sb);
1859 const struct mount_opts *m;
1860 kuid_t uid;
1861 kgid_t gid;
1862 int arg = 0;
1863
1864#ifdef CONFIG_QUOTA
1865 if (token == Opt_usrjquota)
1866 return set_qf_name(sb, USRQUOTA, &args[0]);
1867 else if (token == Opt_grpjquota)
1868 return set_qf_name(sb, GRPQUOTA, &args[0]);
1869 else if (token == Opt_offusrjquota)
1870 return clear_qf_name(sb, USRQUOTA);
1871 else if (token == Opt_offgrpjquota)
1872 return clear_qf_name(sb, GRPQUOTA);
1873#endif
1874 switch (token) {
1875 case Opt_noacl:
1876 case Opt_nouser_xattr:
1877 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1878 break;
1879 case Opt_sb:
1880 return 1; /* handled by get_sb_block() */
1881 case Opt_removed:
1882 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1883 return 1;
1884 case Opt_abort:
1885 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1886 return 1;
1887 case Opt_i_version:
1888 sb->s_flags |= SB_I_VERSION;
1889 return 1;
1890 case Opt_lazytime:
1891 sb->s_flags |= SB_LAZYTIME;
1892 return 1;
1893 case Opt_nolazytime:
1894 sb->s_flags &= ~SB_LAZYTIME;
1895 return 1;
1896 }
1897
1898 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1899 if (token == m->token)
1900 break;
1901
1902 if (m->token == Opt_err) {
1903 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1904 "or missing value", opt);
1905 return -1;
1906 }
1907
1908 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1909 ext4_msg(sb, KERN_ERR,
1910 "Mount option \"%s\" incompatible with ext2", opt);
1911 return -1;
1912 }
1913 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1914 ext4_msg(sb, KERN_ERR,
1915 "Mount option \"%s\" incompatible with ext3", opt);
1916 return -1;
1917 }
1918
1919 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1920 return -1;
1921 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1922 return -1;
1923 if (m->flags & MOPT_EXPLICIT) {
1924 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1925 set_opt2(sb, EXPLICIT_DELALLOC);
1926 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1927 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1928 } else
1929 return -1;
1930 }
1931 if (m->flags & MOPT_CLEAR_ERR)
1932 clear_opt(sb, ERRORS_MASK);
1933 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1934 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1935 "options when quota turned on");
1936 return -1;
1937 }
1938
1939 if (m->flags & MOPT_NOSUPPORT) {
1940 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1941 } else if (token == Opt_commit) {
1942 if (arg == 0)
1943 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1944 else if (arg > INT_MAX / HZ) {
1945 ext4_msg(sb, KERN_ERR,
1946 "Invalid commit interval %d, "
1947 "must be smaller than %d",
1948 arg, INT_MAX / HZ);
1949 return -1;
1950 }
1951 sbi->s_commit_interval = HZ * arg;
1952 } else if (token == Opt_debug_want_extra_isize) {
1953 if ((arg & 1) ||
1954 (arg < 4) ||
1955 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1956 ext4_msg(sb, KERN_ERR,
1957 "Invalid want_extra_isize %d", arg);
1958 return -1;
1959 }
1960 sbi->s_want_extra_isize = arg;
1961 } else if (token == Opt_max_batch_time) {
1962 sbi->s_max_batch_time = arg;
1963 } else if (token == Opt_min_batch_time) {
1964 sbi->s_min_batch_time = arg;
1965 } else if (token == Opt_inode_readahead_blks) {
1966 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1967 ext4_msg(sb, KERN_ERR,
1968 "EXT4-fs: inode_readahead_blks must be "
1969 "0 or a power of 2 smaller than 2^31");
1970 return -1;
1971 }
1972 sbi->s_inode_readahead_blks = arg;
1973 } else if (token == Opt_init_itable) {
1974 set_opt(sb, INIT_INODE_TABLE);
1975 if (!args->from)
1976 arg = EXT4_DEF_LI_WAIT_MULT;
1977 sbi->s_li_wait_mult = arg;
1978 } else if (token == Opt_max_dir_size_kb) {
1979 sbi->s_max_dir_size_kb = arg;
1980 } else if (token == Opt_stripe) {
1981 sbi->s_stripe = arg;
1982 } else if (token == Opt_resuid) {
1983 uid = make_kuid(current_user_ns(), arg);
1984 if (!uid_valid(uid)) {
1985 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1986 return -1;
1987 }
1988 sbi->s_resuid = uid;
1989 } else if (token == Opt_resgid) {
1990 gid = make_kgid(current_user_ns(), arg);
1991 if (!gid_valid(gid)) {
1992 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1993 return -1;
1994 }
1995 sbi->s_resgid = gid;
1996 } else if (token == Opt_journal_dev) {
1997 if (is_remount) {
1998 ext4_msg(sb, KERN_ERR,
1999 "Cannot specify journal on remount");
2000 return -1;
2001 }
2002 *journal_devnum = arg;
2003 } else if (token == Opt_journal_path) {
2004 char *journal_path;
2005 struct inode *journal_inode;
2006 struct path path;
2007 int error;
2008
2009 if (is_remount) {
2010 ext4_msg(sb, KERN_ERR,
2011 "Cannot specify journal on remount");
2012 return -1;
2013 }
2014 journal_path = match_strdup(&args[0]);
2015 if (!journal_path) {
2016 ext4_msg(sb, KERN_ERR, "error: could not dup "
2017 "journal device string");
2018 return -1;
2019 }
2020
2021 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2022 if (error) {
2023 ext4_msg(sb, KERN_ERR, "error: could not find "
2024 "journal device path: error %d", error);
2025 kfree(journal_path);
2026 return -1;
2027 }
2028
2029 journal_inode = d_inode(path.dentry);
2030 if (!S_ISBLK(journal_inode->i_mode)) {
2031 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2032 "is not a block device", journal_path);
2033 path_put(&path);
2034 kfree(journal_path);
2035 return -1;
2036 }
2037
2038 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2039 path_put(&path);
2040 kfree(journal_path);
2041 } else if (token == Opt_journal_ioprio) {
2042 if (arg > 7) {
2043 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2044 " (must be 0-7)");
2045 return -1;
2046 }
2047 *journal_ioprio =
2048 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2049 } else if (token == Opt_test_dummy_encryption) {
1899static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1900 substring_t *args, unsigned long *journal_devnum,
1901 unsigned int *journal_ioprio, int is_remount)
1902{
1903 struct ext4_sb_info *sbi = EXT4_SB(sb);
1904 const struct mount_opts *m;
1905 kuid_t uid;
1906 kgid_t gid;
1907 int arg = 0;
1908
1909#ifdef CONFIG_QUOTA
1910 if (token == Opt_usrjquota)
1911 return set_qf_name(sb, USRQUOTA, &args[0]);
1912 else if (token == Opt_grpjquota)
1913 return set_qf_name(sb, GRPQUOTA, &args[0]);
1914 else if (token == Opt_offusrjquota)
1915 return clear_qf_name(sb, USRQUOTA);
1916 else if (token == Opt_offgrpjquota)
1917 return clear_qf_name(sb, GRPQUOTA);
1918#endif
1919 switch (token) {
1920 case Opt_noacl:
1921 case Opt_nouser_xattr:
1922 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1923 break;
1924 case Opt_sb:
1925 return 1; /* handled by get_sb_block() */
1926 case Opt_removed:
1927 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1928 return 1;
1929 case Opt_abort:
1930 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1931 return 1;
1932 case Opt_i_version:
1933 sb->s_flags |= SB_I_VERSION;
1934 return 1;
1935 case Opt_lazytime:
1936 sb->s_flags |= SB_LAZYTIME;
1937 return 1;
1938 case Opt_nolazytime:
1939 sb->s_flags &= ~SB_LAZYTIME;
1940 return 1;
1941 }
1942
1943 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1944 if (token == m->token)
1945 break;
1946
1947 if (m->token == Opt_err) {
1948 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1949 "or missing value", opt);
1950 return -1;
1951 }
1952
1953 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1954 ext4_msg(sb, KERN_ERR,
1955 "Mount option \"%s\" incompatible with ext2", opt);
1956 return -1;
1957 }
1958 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1959 ext4_msg(sb, KERN_ERR,
1960 "Mount option \"%s\" incompatible with ext3", opt);
1961 return -1;
1962 }
1963
1964 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1965 return -1;
1966 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1967 return -1;
1968 if (m->flags & MOPT_EXPLICIT) {
1969 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1970 set_opt2(sb, EXPLICIT_DELALLOC);
1971 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1972 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1973 } else
1974 return -1;
1975 }
1976 if (m->flags & MOPT_CLEAR_ERR)
1977 clear_opt(sb, ERRORS_MASK);
1978 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1979 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1980 "options when quota turned on");
1981 return -1;
1982 }
1983
1984 if (m->flags & MOPT_NOSUPPORT) {
1985 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1986 } else if (token == Opt_commit) {
1987 if (arg == 0)
1988 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1989 else if (arg > INT_MAX / HZ) {
1990 ext4_msg(sb, KERN_ERR,
1991 "Invalid commit interval %d, "
1992 "must be smaller than %d",
1993 arg, INT_MAX / HZ);
1994 return -1;
1995 }
1996 sbi->s_commit_interval = HZ * arg;
1997 } else if (token == Opt_debug_want_extra_isize) {
1998 if ((arg & 1) ||
1999 (arg < 4) ||
2000 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2001 ext4_msg(sb, KERN_ERR,
2002 "Invalid want_extra_isize %d", arg);
2003 return -1;
2004 }
2005 sbi->s_want_extra_isize = arg;
2006 } else if (token == Opt_max_batch_time) {
2007 sbi->s_max_batch_time = arg;
2008 } else if (token == Opt_min_batch_time) {
2009 sbi->s_min_batch_time = arg;
2010 } else if (token == Opt_inode_readahead_blks) {
2011 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2012 ext4_msg(sb, KERN_ERR,
2013 "EXT4-fs: inode_readahead_blks must be "
2014 "0 or a power of 2 smaller than 2^31");
2015 return -1;
2016 }
2017 sbi->s_inode_readahead_blks = arg;
2018 } else if (token == Opt_init_itable) {
2019 set_opt(sb, INIT_INODE_TABLE);
2020 if (!args->from)
2021 arg = EXT4_DEF_LI_WAIT_MULT;
2022 sbi->s_li_wait_mult = arg;
2023 } else if (token == Opt_max_dir_size_kb) {
2024 sbi->s_max_dir_size_kb = arg;
2025 } else if (token == Opt_stripe) {
2026 sbi->s_stripe = arg;
2027 } else if (token == Opt_resuid) {
2028 uid = make_kuid(current_user_ns(), arg);
2029 if (!uid_valid(uid)) {
2030 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2031 return -1;
2032 }
2033 sbi->s_resuid = uid;
2034 } else if (token == Opt_resgid) {
2035 gid = make_kgid(current_user_ns(), arg);
2036 if (!gid_valid(gid)) {
2037 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2038 return -1;
2039 }
2040 sbi->s_resgid = gid;
2041 } else if (token == Opt_journal_dev) {
2042 if (is_remount) {
2043 ext4_msg(sb, KERN_ERR,
2044 "Cannot specify journal on remount");
2045 return -1;
2046 }
2047 *journal_devnum = arg;
2048 } else if (token == Opt_journal_path) {
2049 char *journal_path;
2050 struct inode *journal_inode;
2051 struct path path;
2052 int error;
2053
2054 if (is_remount) {
2055 ext4_msg(sb, KERN_ERR,
2056 "Cannot specify journal on remount");
2057 return -1;
2058 }
2059 journal_path = match_strdup(&args[0]);
2060 if (!journal_path) {
2061 ext4_msg(sb, KERN_ERR, "error: could not dup "
2062 "journal device string");
2063 return -1;
2064 }
2065
2066 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2067 if (error) {
2068 ext4_msg(sb, KERN_ERR, "error: could not find "
2069 "journal device path: error %d", error);
2070 kfree(journal_path);
2071 return -1;
2072 }
2073
2074 journal_inode = d_inode(path.dentry);
2075 if (!S_ISBLK(journal_inode->i_mode)) {
2076 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2077 "is not a block device", journal_path);
2078 path_put(&path);
2079 kfree(journal_path);
2080 return -1;
2081 }
2082
2083 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2084 path_put(&path);
2085 kfree(journal_path);
2086 } else if (token == Opt_journal_ioprio) {
2087 if (arg > 7) {
2088 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2089 " (must be 0-7)");
2090 return -1;
2091 }
2092 *journal_ioprio =
2093 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2094 } else if (token == Opt_test_dummy_encryption) {
2050#ifdef CONFIG_FS_ENCRYPTION
2051 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2052 ext4_msg(sb, KERN_WARNING,
2053 "Test dummy encryption mode enabled");
2054#else
2055 ext4_msg(sb, KERN_WARNING,
2056 "Test dummy encryption mount option ignored");
2057#endif
2095 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2096 is_remount);
2058 } else if (m->flags & MOPT_DATAJ) {
2059 if (is_remount) {
2060 if (!sbi->s_journal)
2061 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2062 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2063 ext4_msg(sb, KERN_ERR,
2064 "Cannot change data mode on remount");
2065 return -1;
2066 }
2067 } else {
2068 clear_opt(sb, DATA_FLAGS);
2069 sbi->s_mount_opt |= m->mount_opt;
2070 }
2071#ifdef CONFIG_QUOTA
2072 } else if (m->flags & MOPT_QFMT) {
2073 if (sb_any_quota_loaded(sb) &&
2074 sbi->s_jquota_fmt != m->mount_opt) {
2075 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2076 "quota options when quota turned on");
2077 return -1;
2078 }
2079 if (ext4_has_feature_quota(sb)) {
2080 ext4_msg(sb, KERN_INFO,
2081 "Quota format mount options ignored "
2082 "when QUOTA feature is enabled");
2083 return 1;
2084 }
2085 sbi->s_jquota_fmt = m->mount_opt;
2086#endif
2087 } else if (token == Opt_dax) {
2088#ifdef CONFIG_FS_DAX
2089 ext4_msg(sb, KERN_WARNING,
2090 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2091 sbi->s_mount_opt |= m->mount_opt;
2092#else
2093 ext4_msg(sb, KERN_INFO, "dax option not supported");
2094 return -1;
2095#endif
2096 } else if (token == Opt_data_err_abort) {
2097 sbi->s_mount_opt |= m->mount_opt;
2098 } else if (token == Opt_data_err_ignore) {
2099 sbi->s_mount_opt &= ~m->mount_opt;
2100 } else {
2101 if (!args->from)
2102 arg = 1;
2103 if (m->flags & MOPT_CLEAR)
2104 arg = !arg;
2105 else if (unlikely(!(m->flags & MOPT_SET))) {
2106 ext4_msg(sb, KERN_WARNING,
2107 "buggy handling of option %s", opt);
2108 WARN_ON(1);
2109 return -1;
2110 }
2111 if (arg != 0)
2112 sbi->s_mount_opt |= m->mount_opt;
2113 else
2114 sbi->s_mount_opt &= ~m->mount_opt;
2115 }
2116 return 1;
2117}
2118
2119static int parse_options(char *options, struct super_block *sb,
2120 unsigned long *journal_devnum,
2121 unsigned int *journal_ioprio,
2122 int is_remount)
2123{
2124 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2125 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2126 substring_t args[MAX_OPT_ARGS];
2127 int token;
2128
2129 if (!options)
2130 return 1;
2131
2132 while ((p = strsep(&options, ",")) != NULL) {
2133 if (!*p)
2134 continue;
2135 /*
2136 * Initialize args struct so we know whether arg was
2137 * found; some options take optional arguments.
2138 */
2139 args[0].to = args[0].from = NULL;
2140 token = match_token(p, tokens, args);
2141 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2142 journal_ioprio, is_remount) < 0)
2143 return 0;
2144 }
2145#ifdef CONFIG_QUOTA
2146 /*
2147 * We do the test below only for project quotas. 'usrquota' and
2148 * 'grpquota' mount options are allowed even without quota feature
2149 * to support legacy quotas in quota files.
2150 */
2151 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2152 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2153 "Cannot enable project quota enforcement.");
2154 return 0;
2155 }
2156 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2157 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2158 if (usr_qf_name || grp_qf_name) {
2159 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2160 clear_opt(sb, USRQUOTA);
2161
2162 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2163 clear_opt(sb, GRPQUOTA);
2164
2165 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2166 ext4_msg(sb, KERN_ERR, "old and new quota "
2167 "format mixing");
2168 return 0;
2169 }
2170
2171 if (!sbi->s_jquota_fmt) {
2172 ext4_msg(sb, KERN_ERR, "journaled quota format "
2173 "not specified");
2174 return 0;
2175 }
2176 }
2177#endif
2178 if (test_opt(sb, DIOREAD_NOLOCK)) {
2179 int blocksize =
2180 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2181 if (blocksize < PAGE_SIZE)
2182 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2183 "experimental mount option 'dioread_nolock' "
2184 "for blocksize < PAGE_SIZE");
2185 }
2186 return 1;
2187}
2188
2189static inline void ext4_show_quota_options(struct seq_file *seq,
2190 struct super_block *sb)
2191{
2192#if defined(CONFIG_QUOTA)
2193 struct ext4_sb_info *sbi = EXT4_SB(sb);
2194 char *usr_qf_name, *grp_qf_name;
2195
2196 if (sbi->s_jquota_fmt) {
2197 char *fmtname = "";
2198
2199 switch (sbi->s_jquota_fmt) {
2200 case QFMT_VFS_OLD:
2201 fmtname = "vfsold";
2202 break;
2203 case QFMT_VFS_V0:
2204 fmtname = "vfsv0";
2205 break;
2206 case QFMT_VFS_V1:
2207 fmtname = "vfsv1";
2208 break;
2209 }
2210 seq_printf(seq, ",jqfmt=%s", fmtname);
2211 }
2212
2213 rcu_read_lock();
2214 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2215 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2216 if (usr_qf_name)
2217 seq_show_option(seq, "usrjquota", usr_qf_name);
2218 if (grp_qf_name)
2219 seq_show_option(seq, "grpjquota", grp_qf_name);
2220 rcu_read_unlock();
2221#endif
2222}
2223
2224static const char *token2str(int token)
2225{
2226 const struct match_token *t;
2227
2228 for (t = tokens; t->token != Opt_err; t++)
2229 if (t->token == token && !strchr(t->pattern, '='))
2230 break;
2231 return t->pattern;
2232}
2233
2234/*
2235 * Show an option if
2236 * - it's set to a non-default value OR
2237 * - if the per-sb default is different from the global default
2238 */
2239static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2240 int nodefs)
2241{
2242 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 struct ext4_super_block *es = sbi->s_es;
2244 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2245 const struct mount_opts *m;
2246 char sep = nodefs ? '\n' : ',';
2247
2248#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2249#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2250
2251 if (sbi->s_sb_block != 1)
2252 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2253
2254 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2255 int want_set = m->flags & MOPT_SET;
2256 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2257 (m->flags & MOPT_CLEAR_ERR))
2258 continue;
2259 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2260 continue; /* skip if same as the default */
2261 if ((want_set &&
2262 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2263 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2264 continue; /* select Opt_noFoo vs Opt_Foo */
2265 SEQ_OPTS_PRINT("%s", token2str(m->token));
2266 }
2267
2268 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2269 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2270 SEQ_OPTS_PRINT("resuid=%u",
2271 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2272 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2273 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2274 SEQ_OPTS_PRINT("resgid=%u",
2275 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2276 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2277 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2278 SEQ_OPTS_PUTS("errors=remount-ro");
2279 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2280 SEQ_OPTS_PUTS("errors=continue");
2281 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2282 SEQ_OPTS_PUTS("errors=panic");
2283 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2284 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2285 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2286 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2287 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2288 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2289 if (sb->s_flags & SB_I_VERSION)
2290 SEQ_OPTS_PUTS("i_version");
2291 if (nodefs || sbi->s_stripe)
2292 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2293 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2294 (sbi->s_mount_opt ^ def_mount_opt)) {
2295 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2296 SEQ_OPTS_PUTS("data=journal");
2297 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2298 SEQ_OPTS_PUTS("data=ordered");
2299 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2300 SEQ_OPTS_PUTS("data=writeback");
2301 }
2302 if (nodefs ||
2303 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2304 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2305 sbi->s_inode_readahead_blks);
2306
2307 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2308 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2309 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2310 if (nodefs || sbi->s_max_dir_size_kb)
2311 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2312 if (test_opt(sb, DATA_ERR_ABORT))
2313 SEQ_OPTS_PUTS("data_err=abort");
2097 } else if (m->flags & MOPT_DATAJ) {
2098 if (is_remount) {
2099 if (!sbi->s_journal)
2100 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2101 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2102 ext4_msg(sb, KERN_ERR,
2103 "Cannot change data mode on remount");
2104 return -1;
2105 }
2106 } else {
2107 clear_opt(sb, DATA_FLAGS);
2108 sbi->s_mount_opt |= m->mount_opt;
2109 }
2110#ifdef CONFIG_QUOTA
2111 } else if (m->flags & MOPT_QFMT) {
2112 if (sb_any_quota_loaded(sb) &&
2113 sbi->s_jquota_fmt != m->mount_opt) {
2114 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2115 "quota options when quota turned on");
2116 return -1;
2117 }
2118 if (ext4_has_feature_quota(sb)) {
2119 ext4_msg(sb, KERN_INFO,
2120 "Quota format mount options ignored "
2121 "when QUOTA feature is enabled");
2122 return 1;
2123 }
2124 sbi->s_jquota_fmt = m->mount_opt;
2125#endif
2126 } else if (token == Opt_dax) {
2127#ifdef CONFIG_FS_DAX
2128 ext4_msg(sb, KERN_WARNING,
2129 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2130 sbi->s_mount_opt |= m->mount_opt;
2131#else
2132 ext4_msg(sb, KERN_INFO, "dax option not supported");
2133 return -1;
2134#endif
2135 } else if (token == Opt_data_err_abort) {
2136 sbi->s_mount_opt |= m->mount_opt;
2137 } else if (token == Opt_data_err_ignore) {
2138 sbi->s_mount_opt &= ~m->mount_opt;
2139 } else {
2140 if (!args->from)
2141 arg = 1;
2142 if (m->flags & MOPT_CLEAR)
2143 arg = !arg;
2144 else if (unlikely(!(m->flags & MOPT_SET))) {
2145 ext4_msg(sb, KERN_WARNING,
2146 "buggy handling of option %s", opt);
2147 WARN_ON(1);
2148 return -1;
2149 }
2150 if (arg != 0)
2151 sbi->s_mount_opt |= m->mount_opt;
2152 else
2153 sbi->s_mount_opt &= ~m->mount_opt;
2154 }
2155 return 1;
2156}
2157
2158static int parse_options(char *options, struct super_block *sb,
2159 unsigned long *journal_devnum,
2160 unsigned int *journal_ioprio,
2161 int is_remount)
2162{
2163 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2164 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2165 substring_t args[MAX_OPT_ARGS];
2166 int token;
2167
2168 if (!options)
2169 return 1;
2170
2171 while ((p = strsep(&options, ",")) != NULL) {
2172 if (!*p)
2173 continue;
2174 /*
2175 * Initialize args struct so we know whether arg was
2176 * found; some options take optional arguments.
2177 */
2178 args[0].to = args[0].from = NULL;
2179 token = match_token(p, tokens, args);
2180 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2181 journal_ioprio, is_remount) < 0)
2182 return 0;
2183 }
2184#ifdef CONFIG_QUOTA
2185 /*
2186 * We do the test below only for project quotas. 'usrquota' and
2187 * 'grpquota' mount options are allowed even without quota feature
2188 * to support legacy quotas in quota files.
2189 */
2190 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2191 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2192 "Cannot enable project quota enforcement.");
2193 return 0;
2194 }
2195 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2196 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2197 if (usr_qf_name || grp_qf_name) {
2198 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2199 clear_opt(sb, USRQUOTA);
2200
2201 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2202 clear_opt(sb, GRPQUOTA);
2203
2204 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2205 ext4_msg(sb, KERN_ERR, "old and new quota "
2206 "format mixing");
2207 return 0;
2208 }
2209
2210 if (!sbi->s_jquota_fmt) {
2211 ext4_msg(sb, KERN_ERR, "journaled quota format "
2212 "not specified");
2213 return 0;
2214 }
2215 }
2216#endif
2217 if (test_opt(sb, DIOREAD_NOLOCK)) {
2218 int blocksize =
2219 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2220 if (blocksize < PAGE_SIZE)
2221 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2222 "experimental mount option 'dioread_nolock' "
2223 "for blocksize < PAGE_SIZE");
2224 }
2225 return 1;
2226}
2227
2228static inline void ext4_show_quota_options(struct seq_file *seq,
2229 struct super_block *sb)
2230{
2231#if defined(CONFIG_QUOTA)
2232 struct ext4_sb_info *sbi = EXT4_SB(sb);
2233 char *usr_qf_name, *grp_qf_name;
2234
2235 if (sbi->s_jquota_fmt) {
2236 char *fmtname = "";
2237
2238 switch (sbi->s_jquota_fmt) {
2239 case QFMT_VFS_OLD:
2240 fmtname = "vfsold";
2241 break;
2242 case QFMT_VFS_V0:
2243 fmtname = "vfsv0";
2244 break;
2245 case QFMT_VFS_V1:
2246 fmtname = "vfsv1";
2247 break;
2248 }
2249 seq_printf(seq, ",jqfmt=%s", fmtname);
2250 }
2251
2252 rcu_read_lock();
2253 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2254 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2255 if (usr_qf_name)
2256 seq_show_option(seq, "usrjquota", usr_qf_name);
2257 if (grp_qf_name)
2258 seq_show_option(seq, "grpjquota", grp_qf_name);
2259 rcu_read_unlock();
2260#endif
2261}
2262
2263static const char *token2str(int token)
2264{
2265 const struct match_token *t;
2266
2267 for (t = tokens; t->token != Opt_err; t++)
2268 if (t->token == token && !strchr(t->pattern, '='))
2269 break;
2270 return t->pattern;
2271}
2272
2273/*
2274 * Show an option if
2275 * - it's set to a non-default value OR
2276 * - if the per-sb default is different from the global default
2277 */
2278static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2279 int nodefs)
2280{
2281 struct ext4_sb_info *sbi = EXT4_SB(sb);
2282 struct ext4_super_block *es = sbi->s_es;
2283 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2284 const struct mount_opts *m;
2285 char sep = nodefs ? '\n' : ',';
2286
2287#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2288#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2289
2290 if (sbi->s_sb_block != 1)
2291 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2292
2293 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2294 int want_set = m->flags & MOPT_SET;
2295 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2296 (m->flags & MOPT_CLEAR_ERR))
2297 continue;
2298 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2299 continue; /* skip if same as the default */
2300 if ((want_set &&
2301 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2302 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2303 continue; /* select Opt_noFoo vs Opt_Foo */
2304 SEQ_OPTS_PRINT("%s", token2str(m->token));
2305 }
2306
2307 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2308 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2309 SEQ_OPTS_PRINT("resuid=%u",
2310 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2311 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2312 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2313 SEQ_OPTS_PRINT("resgid=%u",
2314 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2315 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2316 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2317 SEQ_OPTS_PUTS("errors=remount-ro");
2318 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2319 SEQ_OPTS_PUTS("errors=continue");
2320 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2321 SEQ_OPTS_PUTS("errors=panic");
2322 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2323 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2324 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2325 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2326 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2327 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2328 if (sb->s_flags & SB_I_VERSION)
2329 SEQ_OPTS_PUTS("i_version");
2330 if (nodefs || sbi->s_stripe)
2331 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2332 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2333 (sbi->s_mount_opt ^ def_mount_opt)) {
2334 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2335 SEQ_OPTS_PUTS("data=journal");
2336 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2337 SEQ_OPTS_PUTS("data=ordered");
2338 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2339 SEQ_OPTS_PUTS("data=writeback");
2340 }
2341 if (nodefs ||
2342 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2343 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2344 sbi->s_inode_readahead_blks);
2345
2346 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2347 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2348 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2349 if (nodefs || sbi->s_max_dir_size_kb)
2350 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2351 if (test_opt(sb, DATA_ERR_ABORT))
2352 SEQ_OPTS_PUTS("data_err=abort");
2314 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2315 SEQ_OPTS_PUTS("test_dummy_encryption");
2316
2353
2354 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2355
2317 ext4_show_quota_options(seq, sb);
2318 return 0;
2319}
2320
2321static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2322{
2323 return _ext4_show_options(seq, root->d_sb, 0);
2324}
2325
2326int ext4_seq_options_show(struct seq_file *seq, void *offset)
2327{
2328 struct super_block *sb = seq->private;
2329 int rc;
2330
2331 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2332 rc = _ext4_show_options(seq, sb, 1);
2333 seq_puts(seq, "\n");
2334 return rc;
2335}
2336
2337static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2338 int read_only)
2339{
2340 struct ext4_sb_info *sbi = EXT4_SB(sb);
2341 int err = 0;
2342
2343 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2344 ext4_msg(sb, KERN_ERR, "revision level too high, "
2345 "forcing read-only mode");
2346 err = -EROFS;
2347 }
2348 if (read_only)
2349 goto done;
2350 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2351 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2352 "running e2fsck is recommended");
2353 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2354 ext4_msg(sb, KERN_WARNING,
2355 "warning: mounting fs with errors, "
2356 "running e2fsck is recommended");
2357 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2358 le16_to_cpu(es->s_mnt_count) >=
2359 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2360 ext4_msg(sb, KERN_WARNING,
2361 "warning: maximal mount count reached, "
2362 "running e2fsck is recommended");
2363 else if (le32_to_cpu(es->s_checkinterval) &&
2364 (ext4_get_tstamp(es, s_lastcheck) +
2365 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2366 ext4_msg(sb, KERN_WARNING,
2367 "warning: checktime reached, "
2368 "running e2fsck is recommended");
2369 if (!sbi->s_journal)
2370 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2371 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2372 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2373 le16_add_cpu(&es->s_mnt_count, 1);
2374 ext4_update_tstamp(es, s_mtime);
2375 if (sbi->s_journal)
2376 ext4_set_feature_journal_needs_recovery(sb);
2377
2378 err = ext4_commit_super(sb, 1);
2379done:
2380 if (test_opt(sb, DEBUG))
2381 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2382 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2383 sb->s_blocksize,
2384 sbi->s_groups_count,
2385 EXT4_BLOCKS_PER_GROUP(sb),
2386 EXT4_INODES_PER_GROUP(sb),
2387 sbi->s_mount_opt, sbi->s_mount_opt2);
2388
2389 cleancache_init_fs(sb);
2390 return err;
2391}
2392
2393int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2394{
2395 struct ext4_sb_info *sbi = EXT4_SB(sb);
2396 struct flex_groups **old_groups, **new_groups;
2397 int size, i, j;
2398
2399 if (!sbi->s_log_groups_per_flex)
2400 return 0;
2401
2402 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2403 if (size <= sbi->s_flex_groups_allocated)
2404 return 0;
2405
2406 new_groups = kvzalloc(roundup_pow_of_two(size *
2407 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2408 if (!new_groups) {
2409 ext4_msg(sb, KERN_ERR,
2410 "not enough memory for %d flex group pointers", size);
2411 return -ENOMEM;
2412 }
2413 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2414 new_groups[i] = kvzalloc(roundup_pow_of_two(
2415 sizeof(struct flex_groups)),
2416 GFP_KERNEL);
2417 if (!new_groups[i]) {
2418 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2419 kvfree(new_groups[j]);
2420 kvfree(new_groups);
2421 ext4_msg(sb, KERN_ERR,
2422 "not enough memory for %d flex groups", size);
2423 return -ENOMEM;
2424 }
2425 }
2426 rcu_read_lock();
2427 old_groups = rcu_dereference(sbi->s_flex_groups);
2428 if (old_groups)
2429 memcpy(new_groups, old_groups,
2430 (sbi->s_flex_groups_allocated *
2431 sizeof(struct flex_groups *)));
2432 rcu_read_unlock();
2433 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2434 sbi->s_flex_groups_allocated = size;
2435 if (old_groups)
2436 ext4_kvfree_array_rcu(old_groups);
2437 return 0;
2438}
2439
2440static int ext4_fill_flex_info(struct super_block *sb)
2441{
2442 struct ext4_sb_info *sbi = EXT4_SB(sb);
2443 struct ext4_group_desc *gdp = NULL;
2444 struct flex_groups *fg;
2445 ext4_group_t flex_group;
2446 int i, err;
2447
2448 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2449 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2450 sbi->s_log_groups_per_flex = 0;
2451 return 1;
2452 }
2453
2454 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2455 if (err)
2456 goto failed;
2457
2458 for (i = 0; i < sbi->s_groups_count; i++) {
2459 gdp = ext4_get_group_desc(sb, i, NULL);
2460
2461 flex_group = ext4_flex_group(sbi, i);
2462 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2463 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2464 atomic64_add(ext4_free_group_clusters(sb, gdp),
2465 &fg->free_clusters);
2466 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2467 }
2468
2469 return 1;
2470failed:
2471 return 0;
2472}
2473
2474static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2475 struct ext4_group_desc *gdp)
2476{
2477 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2478 __u16 crc = 0;
2479 __le32 le_group = cpu_to_le32(block_group);
2480 struct ext4_sb_info *sbi = EXT4_SB(sb);
2481
2482 if (ext4_has_metadata_csum(sbi->s_sb)) {
2483 /* Use new metadata_csum algorithm */
2484 __u32 csum32;
2485 __u16 dummy_csum = 0;
2486
2487 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2488 sizeof(le_group));
2489 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2490 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2491 sizeof(dummy_csum));
2492 offset += sizeof(dummy_csum);
2493 if (offset < sbi->s_desc_size)
2494 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2495 sbi->s_desc_size - offset);
2496
2497 crc = csum32 & 0xFFFF;
2498 goto out;
2499 }
2500
2501 /* old crc16 code */
2502 if (!ext4_has_feature_gdt_csum(sb))
2503 return 0;
2504
2505 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2506 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2507 crc = crc16(crc, (__u8 *)gdp, offset);
2508 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2509 /* for checksum of struct ext4_group_desc do the rest...*/
2510 if (ext4_has_feature_64bit(sb) &&
2511 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2512 crc = crc16(crc, (__u8 *)gdp + offset,
2513 le16_to_cpu(sbi->s_es->s_desc_size) -
2514 offset);
2515
2516out:
2517 return cpu_to_le16(crc);
2518}
2519
2520int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2521 struct ext4_group_desc *gdp)
2522{
2523 if (ext4_has_group_desc_csum(sb) &&
2524 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2525 return 0;
2526
2527 return 1;
2528}
2529
2530void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2531 struct ext4_group_desc *gdp)
2532{
2533 if (!ext4_has_group_desc_csum(sb))
2534 return;
2535 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2536}
2537
2538/* Called at mount-time, super-block is locked */
2539static int ext4_check_descriptors(struct super_block *sb,
2540 ext4_fsblk_t sb_block,
2541 ext4_group_t *first_not_zeroed)
2542{
2543 struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2545 ext4_fsblk_t last_block;
2546 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2547 ext4_fsblk_t block_bitmap;
2548 ext4_fsblk_t inode_bitmap;
2549 ext4_fsblk_t inode_table;
2550 int flexbg_flag = 0;
2551 ext4_group_t i, grp = sbi->s_groups_count;
2552
2553 if (ext4_has_feature_flex_bg(sb))
2554 flexbg_flag = 1;
2555
2556 ext4_debug("Checking group descriptors");
2557
2558 for (i = 0; i < sbi->s_groups_count; i++) {
2559 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2560
2561 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2562 last_block = ext4_blocks_count(sbi->s_es) - 1;
2563 else
2564 last_block = first_block +
2565 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2566
2567 if ((grp == sbi->s_groups_count) &&
2568 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2569 grp = i;
2570
2571 block_bitmap = ext4_block_bitmap(sb, gdp);
2572 if (block_bitmap == sb_block) {
2573 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2574 "Block bitmap for group %u overlaps "
2575 "superblock", i);
2576 if (!sb_rdonly(sb))
2577 return 0;
2578 }
2579 if (block_bitmap >= sb_block + 1 &&
2580 block_bitmap <= last_bg_block) {
2581 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2582 "Block bitmap for group %u overlaps "
2583 "block group descriptors", i);
2584 if (!sb_rdonly(sb))
2585 return 0;
2586 }
2587 if (block_bitmap < first_block || block_bitmap > last_block) {
2588 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2589 "Block bitmap for group %u not in group "
2590 "(block %llu)!", i, block_bitmap);
2591 return 0;
2592 }
2593 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2594 if (inode_bitmap == sb_block) {
2595 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2596 "Inode bitmap for group %u overlaps "
2597 "superblock", i);
2598 if (!sb_rdonly(sb))
2599 return 0;
2600 }
2601 if (inode_bitmap >= sb_block + 1 &&
2602 inode_bitmap <= last_bg_block) {
2603 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2604 "Inode bitmap for group %u overlaps "
2605 "block group descriptors", i);
2606 if (!sb_rdonly(sb))
2607 return 0;
2608 }
2609 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2610 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2611 "Inode bitmap for group %u not in group "
2612 "(block %llu)!", i, inode_bitmap);
2613 return 0;
2614 }
2615 inode_table = ext4_inode_table(sb, gdp);
2616 if (inode_table == sb_block) {
2617 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2618 "Inode table for group %u overlaps "
2619 "superblock", i);
2620 if (!sb_rdonly(sb))
2621 return 0;
2622 }
2623 if (inode_table >= sb_block + 1 &&
2624 inode_table <= last_bg_block) {
2625 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2626 "Inode table for group %u overlaps "
2627 "block group descriptors", i);
2628 if (!sb_rdonly(sb))
2629 return 0;
2630 }
2631 if (inode_table < first_block ||
2632 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2633 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2634 "Inode table for group %u not in group "
2635 "(block %llu)!", i, inode_table);
2636 return 0;
2637 }
2638 ext4_lock_group(sb, i);
2639 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2640 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2641 "Checksum for group %u failed (%u!=%u)",
2642 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2643 gdp)), le16_to_cpu(gdp->bg_checksum));
2644 if (!sb_rdonly(sb)) {
2645 ext4_unlock_group(sb, i);
2646 return 0;
2647 }
2648 }
2649 ext4_unlock_group(sb, i);
2650 if (!flexbg_flag)
2651 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2652 }
2653 if (NULL != first_not_zeroed)
2654 *first_not_zeroed = grp;
2655 return 1;
2656}
2657
2658/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2659 * the superblock) which were deleted from all directories, but held open by
2660 * a process at the time of a crash. We walk the list and try to delete these
2661 * inodes at recovery time (only with a read-write filesystem).
2662 *
2663 * In order to keep the orphan inode chain consistent during traversal (in
2664 * case of crash during recovery), we link each inode into the superblock
2665 * orphan list_head and handle it the same way as an inode deletion during
2666 * normal operation (which journals the operations for us).
2667 *
2668 * We only do an iget() and an iput() on each inode, which is very safe if we
2669 * accidentally point at an in-use or already deleted inode. The worst that
2670 * can happen in this case is that we get a "bit already cleared" message from
2671 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2672 * e2fsck was run on this filesystem, and it must have already done the orphan
2673 * inode cleanup for us, so we can safely abort without any further action.
2674 */
2675static void ext4_orphan_cleanup(struct super_block *sb,
2676 struct ext4_super_block *es)
2677{
2678 unsigned int s_flags = sb->s_flags;
2679 int ret, nr_orphans = 0, nr_truncates = 0;
2680#ifdef CONFIG_QUOTA
2681 int quota_update = 0;
2682 int i;
2683#endif
2684 if (!es->s_last_orphan) {
2685 jbd_debug(4, "no orphan inodes to clean up\n");
2686 return;
2687 }
2688
2689 if (bdev_read_only(sb->s_bdev)) {
2690 ext4_msg(sb, KERN_ERR, "write access "
2691 "unavailable, skipping orphan cleanup");
2692 return;
2693 }
2694
2695 /* Check if feature set would not allow a r/w mount */
2696 if (!ext4_feature_set_ok(sb, 0)) {
2697 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2698 "unknown ROCOMPAT features");
2699 return;
2700 }
2701
2702 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2703 /* don't clear list on RO mount w/ errors */
2704 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2705 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2706 "clearing orphan list.\n");
2707 es->s_last_orphan = 0;
2708 }
2709 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2710 return;
2711 }
2712
2713 if (s_flags & SB_RDONLY) {
2714 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2715 sb->s_flags &= ~SB_RDONLY;
2716 }
2717#ifdef CONFIG_QUOTA
2718 /* Needed for iput() to work correctly and not trash data */
2719 sb->s_flags |= SB_ACTIVE;
2720
2721 /*
2722 * Turn on quotas which were not enabled for read-only mounts if
2723 * filesystem has quota feature, so that they are updated correctly.
2724 */
2725 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2726 int ret = ext4_enable_quotas(sb);
2727
2728 if (!ret)
2729 quota_update = 1;
2730 else
2731 ext4_msg(sb, KERN_ERR,
2732 "Cannot turn on quotas: error %d", ret);
2733 }
2734
2735 /* Turn on journaled quotas used for old sytle */
2736 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2737 if (EXT4_SB(sb)->s_qf_names[i]) {
2738 int ret = ext4_quota_on_mount(sb, i);
2739
2740 if (!ret)
2741 quota_update = 1;
2742 else
2743 ext4_msg(sb, KERN_ERR,
2744 "Cannot turn on journaled "
2745 "quota: type %d: error %d", i, ret);
2746 }
2747 }
2748#endif
2749
2750 while (es->s_last_orphan) {
2751 struct inode *inode;
2752
2753 /*
2754 * We may have encountered an error during cleanup; if
2755 * so, skip the rest.
2756 */
2757 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2758 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2759 es->s_last_orphan = 0;
2760 break;
2761 }
2762
2763 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2764 if (IS_ERR(inode)) {
2765 es->s_last_orphan = 0;
2766 break;
2767 }
2768
2769 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2770 dquot_initialize(inode);
2771 if (inode->i_nlink) {
2772 if (test_opt(sb, DEBUG))
2773 ext4_msg(sb, KERN_DEBUG,
2774 "%s: truncating inode %lu to %lld bytes",
2775 __func__, inode->i_ino, inode->i_size);
2776 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2777 inode->i_ino, inode->i_size);
2778 inode_lock(inode);
2779 truncate_inode_pages(inode->i_mapping, inode->i_size);
2780 ret = ext4_truncate(inode);
2781 if (ret)
2782 ext4_std_error(inode->i_sb, ret);
2783 inode_unlock(inode);
2784 nr_truncates++;
2785 } else {
2786 if (test_opt(sb, DEBUG))
2787 ext4_msg(sb, KERN_DEBUG,
2788 "%s: deleting unreferenced inode %lu",
2789 __func__, inode->i_ino);
2790 jbd_debug(2, "deleting unreferenced inode %lu\n",
2791 inode->i_ino);
2792 nr_orphans++;
2793 }
2794 iput(inode); /* The delete magic happens here! */
2795 }
2796
2797#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2798
2799 if (nr_orphans)
2800 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2801 PLURAL(nr_orphans));
2802 if (nr_truncates)
2803 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2804 PLURAL(nr_truncates));
2805#ifdef CONFIG_QUOTA
2806 /* Turn off quotas if they were enabled for orphan cleanup */
2807 if (quota_update) {
2808 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2809 if (sb_dqopt(sb)->files[i])
2810 dquot_quota_off(sb, i);
2811 }
2812 }
2813#endif
2814 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2815}
2816
2817/*
2818 * Maximal extent format file size.
2819 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2820 * extent format containers, within a sector_t, and within i_blocks
2821 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2822 * so that won't be a limiting factor.
2823 *
2824 * However there is other limiting factor. We do store extents in the form
2825 * of starting block and length, hence the resulting length of the extent
2826 * covering maximum file size must fit into on-disk format containers as
2827 * well. Given that length is always by 1 unit bigger than max unit (because
2828 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2829 *
2830 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2831 */
2832static loff_t ext4_max_size(int blkbits, int has_huge_files)
2833{
2834 loff_t res;
2835 loff_t upper_limit = MAX_LFS_FILESIZE;
2836
2837 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2838
2839 if (!has_huge_files) {
2840 upper_limit = (1LL << 32) - 1;
2841
2842 /* total blocks in file system block size */
2843 upper_limit >>= (blkbits - 9);
2844 upper_limit <<= blkbits;
2845 }
2846
2847 /*
2848 * 32-bit extent-start container, ee_block. We lower the maxbytes
2849 * by one fs block, so ee_len can cover the extent of maximum file
2850 * size
2851 */
2852 res = (1LL << 32) - 1;
2853 res <<= blkbits;
2854
2855 /* Sanity check against vm- & vfs- imposed limits */
2856 if (res > upper_limit)
2857 res = upper_limit;
2858
2859 return res;
2860}
2861
2862/*
2863 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2864 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2865 * We need to be 1 filesystem block less than the 2^48 sector limit.
2866 */
2867static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2868{
2869 loff_t res = EXT4_NDIR_BLOCKS;
2870 int meta_blocks;
2871 loff_t upper_limit;
2872 /* This is calculated to be the largest file size for a dense, block
2873 * mapped file such that the file's total number of 512-byte sectors,
2874 * including data and all indirect blocks, does not exceed (2^48 - 1).
2875 *
2876 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2877 * number of 512-byte sectors of the file.
2878 */
2879
2880 if (!has_huge_files) {
2881 /*
2882 * !has_huge_files or implies that the inode i_block field
2883 * represents total file blocks in 2^32 512-byte sectors ==
2884 * size of vfs inode i_blocks * 8
2885 */
2886 upper_limit = (1LL << 32) - 1;
2887
2888 /* total blocks in file system block size */
2889 upper_limit >>= (bits - 9);
2890
2891 } else {
2892 /*
2893 * We use 48 bit ext4_inode i_blocks
2894 * With EXT4_HUGE_FILE_FL set the i_blocks
2895 * represent total number of blocks in
2896 * file system block size
2897 */
2898 upper_limit = (1LL << 48) - 1;
2899
2900 }
2901
2902 /* indirect blocks */
2903 meta_blocks = 1;
2904 /* double indirect blocks */
2905 meta_blocks += 1 + (1LL << (bits-2));
2906 /* tripple indirect blocks */
2907 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2908
2909 upper_limit -= meta_blocks;
2910 upper_limit <<= bits;
2911
2912 res += 1LL << (bits-2);
2913 res += 1LL << (2*(bits-2));
2914 res += 1LL << (3*(bits-2));
2915 res <<= bits;
2916 if (res > upper_limit)
2917 res = upper_limit;
2918
2919 if (res > MAX_LFS_FILESIZE)
2920 res = MAX_LFS_FILESIZE;
2921
2922 return res;
2923}
2924
2925static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2926 ext4_fsblk_t logical_sb_block, int nr)
2927{
2928 struct ext4_sb_info *sbi = EXT4_SB(sb);
2929 ext4_group_t bg, first_meta_bg;
2930 int has_super = 0;
2931
2932 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2933
2934 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2935 return logical_sb_block + nr + 1;
2936 bg = sbi->s_desc_per_block * nr;
2937 if (ext4_bg_has_super(sb, bg))
2938 has_super = 1;
2939
2940 /*
2941 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2942 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2943 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2944 * compensate.
2945 */
2946 if (sb->s_blocksize == 1024 && nr == 0 &&
2947 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2948 has_super++;
2949
2950 return (has_super + ext4_group_first_block_no(sb, bg));
2951}
2952
2953/**
2954 * ext4_get_stripe_size: Get the stripe size.
2955 * @sbi: In memory super block info
2956 *
2957 * If we have specified it via mount option, then
2958 * use the mount option value. If the value specified at mount time is
2959 * greater than the blocks per group use the super block value.
2960 * If the super block value is greater than blocks per group return 0.
2961 * Allocator needs it be less than blocks per group.
2962 *
2963 */
2964static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2965{
2966 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2967 unsigned long stripe_width =
2968 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2969 int ret;
2970
2971 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2972 ret = sbi->s_stripe;
2973 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2974 ret = stripe_width;
2975 else if (stride && stride <= sbi->s_blocks_per_group)
2976 ret = stride;
2977 else
2978 ret = 0;
2979
2980 /*
2981 * If the stripe width is 1, this makes no sense and
2982 * we set it to 0 to turn off stripe handling code.
2983 */
2984 if (ret <= 1)
2985 ret = 0;
2986
2987 return ret;
2988}
2989
2990/*
2991 * Check whether this filesystem can be mounted based on
2992 * the features present and the RDONLY/RDWR mount requested.
2993 * Returns 1 if this filesystem can be mounted as requested,
2994 * 0 if it cannot be.
2995 */
2996static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2997{
2998 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2999 ext4_msg(sb, KERN_ERR,
3000 "Couldn't mount because of "
3001 "unsupported optional features (%x)",
3002 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3003 ~EXT4_FEATURE_INCOMPAT_SUPP));
3004 return 0;
3005 }
3006
3007#ifndef CONFIG_UNICODE
3008 if (ext4_has_feature_casefold(sb)) {
3009 ext4_msg(sb, KERN_ERR,
3010 "Filesystem with casefold feature cannot be "
3011 "mounted without CONFIG_UNICODE");
3012 return 0;
3013 }
3014#endif
3015
3016 if (readonly)
3017 return 1;
3018
3019 if (ext4_has_feature_readonly(sb)) {
3020 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3021 sb->s_flags |= SB_RDONLY;
3022 return 1;
3023 }
3024
3025 /* Check that feature set is OK for a read-write mount */
3026 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3027 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3028 "unsupported optional features (%x)",
3029 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3030 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3031 return 0;
3032 }
3033 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3034 ext4_msg(sb, KERN_ERR,
3035 "Can't support bigalloc feature without "
3036 "extents feature\n");
3037 return 0;
3038 }
3039
3040#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3041 if (!readonly && (ext4_has_feature_quota(sb) ||
3042 ext4_has_feature_project(sb))) {
3043 ext4_msg(sb, KERN_ERR,
3044 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3045 return 0;
3046 }
3047#endif /* CONFIG_QUOTA */
3048 return 1;
3049}
3050
3051/*
3052 * This function is called once a day if we have errors logged
3053 * on the file system
3054 */
3055static void print_daily_error_info(struct timer_list *t)
3056{
3057 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3058 struct super_block *sb = sbi->s_sb;
3059 struct ext4_super_block *es = sbi->s_es;
3060
3061 if (es->s_error_count)
3062 /* fsck newer than v1.41.13 is needed to clean this condition. */
3063 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3064 le32_to_cpu(es->s_error_count));
3065 if (es->s_first_error_time) {
3066 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3067 sb->s_id,
3068 ext4_get_tstamp(es, s_first_error_time),
3069 (int) sizeof(es->s_first_error_func),
3070 es->s_first_error_func,
3071 le32_to_cpu(es->s_first_error_line));
3072 if (es->s_first_error_ino)
3073 printk(KERN_CONT ": inode %u",
3074 le32_to_cpu(es->s_first_error_ino));
3075 if (es->s_first_error_block)
3076 printk(KERN_CONT ": block %llu", (unsigned long long)
3077 le64_to_cpu(es->s_first_error_block));
3078 printk(KERN_CONT "\n");
3079 }
3080 if (es->s_last_error_time) {
3081 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3082 sb->s_id,
3083 ext4_get_tstamp(es, s_last_error_time),
3084 (int) sizeof(es->s_last_error_func),
3085 es->s_last_error_func,
3086 le32_to_cpu(es->s_last_error_line));
3087 if (es->s_last_error_ino)
3088 printk(KERN_CONT ": inode %u",
3089 le32_to_cpu(es->s_last_error_ino));
3090 if (es->s_last_error_block)
3091 printk(KERN_CONT ": block %llu", (unsigned long long)
3092 le64_to_cpu(es->s_last_error_block));
3093 printk(KERN_CONT "\n");
3094 }
3095 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3096}
3097
3098/* Find next suitable group and run ext4_init_inode_table */
3099static int ext4_run_li_request(struct ext4_li_request *elr)
3100{
3101 struct ext4_group_desc *gdp = NULL;
3102 ext4_group_t group, ngroups;
3103 struct super_block *sb;
3104 unsigned long timeout = 0;
3105 int ret = 0;
3106
3107 sb = elr->lr_super;
3108 ngroups = EXT4_SB(sb)->s_groups_count;
3109
3110 for (group = elr->lr_next_group; group < ngroups; group++) {
3111 gdp = ext4_get_group_desc(sb, group, NULL);
3112 if (!gdp) {
3113 ret = 1;
3114 break;
3115 }
3116
3117 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3118 break;
3119 }
3120
3121 if (group >= ngroups)
3122 ret = 1;
3123
3124 if (!ret) {
3125 timeout = jiffies;
3126 ret = ext4_init_inode_table(sb, group,
3127 elr->lr_timeout ? 0 : 1);
3128 if (elr->lr_timeout == 0) {
3129 timeout = (jiffies - timeout) *
3130 elr->lr_sbi->s_li_wait_mult;
3131 elr->lr_timeout = timeout;
3132 }
3133 elr->lr_next_sched = jiffies + elr->lr_timeout;
3134 elr->lr_next_group = group + 1;
3135 }
3136 return ret;
3137}
3138
3139/*
3140 * Remove lr_request from the list_request and free the
3141 * request structure. Should be called with li_list_mtx held
3142 */
3143static void ext4_remove_li_request(struct ext4_li_request *elr)
3144{
3145 struct ext4_sb_info *sbi;
3146
3147 if (!elr)
3148 return;
3149
3150 sbi = elr->lr_sbi;
3151
3152 list_del(&elr->lr_request);
3153 sbi->s_li_request = NULL;
3154 kfree(elr);
3155}
3156
3157static void ext4_unregister_li_request(struct super_block *sb)
3158{
3159 mutex_lock(&ext4_li_mtx);
3160 if (!ext4_li_info) {
3161 mutex_unlock(&ext4_li_mtx);
3162 return;
3163 }
3164
3165 mutex_lock(&ext4_li_info->li_list_mtx);
3166 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3167 mutex_unlock(&ext4_li_info->li_list_mtx);
3168 mutex_unlock(&ext4_li_mtx);
3169}
3170
3171static struct task_struct *ext4_lazyinit_task;
3172
3173/*
3174 * This is the function where ext4lazyinit thread lives. It walks
3175 * through the request list searching for next scheduled filesystem.
3176 * When such a fs is found, run the lazy initialization request
3177 * (ext4_rn_li_request) and keep track of the time spend in this
3178 * function. Based on that time we compute next schedule time of
3179 * the request. When walking through the list is complete, compute
3180 * next waking time and put itself into sleep.
3181 */
3182static int ext4_lazyinit_thread(void *arg)
3183{
3184 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3185 struct list_head *pos, *n;
3186 struct ext4_li_request *elr;
3187 unsigned long next_wakeup, cur;
3188
3189 BUG_ON(NULL == eli);
3190
3191cont_thread:
3192 while (true) {
3193 next_wakeup = MAX_JIFFY_OFFSET;
3194
3195 mutex_lock(&eli->li_list_mtx);
3196 if (list_empty(&eli->li_request_list)) {
3197 mutex_unlock(&eli->li_list_mtx);
3198 goto exit_thread;
3199 }
3200 list_for_each_safe(pos, n, &eli->li_request_list) {
3201 int err = 0;
3202 int progress = 0;
3203 elr = list_entry(pos, struct ext4_li_request,
3204 lr_request);
3205
3206 if (time_before(jiffies, elr->lr_next_sched)) {
3207 if (time_before(elr->lr_next_sched, next_wakeup))
3208 next_wakeup = elr->lr_next_sched;
3209 continue;
3210 }
3211 if (down_read_trylock(&elr->lr_super->s_umount)) {
3212 if (sb_start_write_trylock(elr->lr_super)) {
3213 progress = 1;
3214 /*
3215 * We hold sb->s_umount, sb can not
3216 * be removed from the list, it is
3217 * now safe to drop li_list_mtx
3218 */
3219 mutex_unlock(&eli->li_list_mtx);
3220 err = ext4_run_li_request(elr);
3221 sb_end_write(elr->lr_super);
3222 mutex_lock(&eli->li_list_mtx);
3223 n = pos->next;
3224 }
3225 up_read((&elr->lr_super->s_umount));
3226 }
3227 /* error, remove the lazy_init job */
3228 if (err) {
3229 ext4_remove_li_request(elr);
3230 continue;
3231 }
3232 if (!progress) {
3233 elr->lr_next_sched = jiffies +
3234 (prandom_u32()
3235 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3236 }
3237 if (time_before(elr->lr_next_sched, next_wakeup))
3238 next_wakeup = elr->lr_next_sched;
3239 }
3240 mutex_unlock(&eli->li_list_mtx);
3241
3242 try_to_freeze();
3243
3244 cur = jiffies;
3245 if ((time_after_eq(cur, next_wakeup)) ||
3246 (MAX_JIFFY_OFFSET == next_wakeup)) {
3247 cond_resched();
3248 continue;
3249 }
3250
3251 schedule_timeout_interruptible(next_wakeup - cur);
3252
3253 if (kthread_should_stop()) {
3254 ext4_clear_request_list();
3255 goto exit_thread;
3256 }
3257 }
3258
3259exit_thread:
3260 /*
3261 * It looks like the request list is empty, but we need
3262 * to check it under the li_list_mtx lock, to prevent any
3263 * additions into it, and of course we should lock ext4_li_mtx
3264 * to atomically free the list and ext4_li_info, because at
3265 * this point another ext4 filesystem could be registering
3266 * new one.
3267 */
3268 mutex_lock(&ext4_li_mtx);
3269 mutex_lock(&eli->li_list_mtx);
3270 if (!list_empty(&eli->li_request_list)) {
3271 mutex_unlock(&eli->li_list_mtx);
3272 mutex_unlock(&ext4_li_mtx);
3273 goto cont_thread;
3274 }
3275 mutex_unlock(&eli->li_list_mtx);
3276 kfree(ext4_li_info);
3277 ext4_li_info = NULL;
3278 mutex_unlock(&ext4_li_mtx);
3279
3280 return 0;
3281}
3282
3283static void ext4_clear_request_list(void)
3284{
3285 struct list_head *pos, *n;
3286 struct ext4_li_request *elr;
3287
3288 mutex_lock(&ext4_li_info->li_list_mtx);
3289 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3290 elr = list_entry(pos, struct ext4_li_request,
3291 lr_request);
3292 ext4_remove_li_request(elr);
3293 }
3294 mutex_unlock(&ext4_li_info->li_list_mtx);
3295}
3296
3297static int ext4_run_lazyinit_thread(void)
3298{
3299 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3300 ext4_li_info, "ext4lazyinit");
3301 if (IS_ERR(ext4_lazyinit_task)) {
3302 int err = PTR_ERR(ext4_lazyinit_task);
3303 ext4_clear_request_list();
3304 kfree(ext4_li_info);
3305 ext4_li_info = NULL;
3306 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3307 "initialization thread\n",
3308 err);
3309 return err;
3310 }
3311 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3312 return 0;
3313}
3314
3315/*
3316 * Check whether it make sense to run itable init. thread or not.
3317 * If there is at least one uninitialized inode table, return
3318 * corresponding group number, else the loop goes through all
3319 * groups and return total number of groups.
3320 */
3321static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3322{
3323 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3324 struct ext4_group_desc *gdp = NULL;
3325
3326 if (!ext4_has_group_desc_csum(sb))
3327 return ngroups;
3328
3329 for (group = 0; group < ngroups; group++) {
3330 gdp = ext4_get_group_desc(sb, group, NULL);
3331 if (!gdp)
3332 continue;
3333
3334 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3335 break;
3336 }
3337
3338 return group;
3339}
3340
3341static int ext4_li_info_new(void)
3342{
3343 struct ext4_lazy_init *eli = NULL;
3344
3345 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3346 if (!eli)
3347 return -ENOMEM;
3348
3349 INIT_LIST_HEAD(&eli->li_request_list);
3350 mutex_init(&eli->li_list_mtx);
3351
3352 eli->li_state |= EXT4_LAZYINIT_QUIT;
3353
3354 ext4_li_info = eli;
3355
3356 return 0;
3357}
3358
3359static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3360 ext4_group_t start)
3361{
3362 struct ext4_sb_info *sbi = EXT4_SB(sb);
3363 struct ext4_li_request *elr;
3364
3365 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3366 if (!elr)
3367 return NULL;
3368
3369 elr->lr_super = sb;
3370 elr->lr_sbi = sbi;
3371 elr->lr_next_group = start;
3372
3373 /*
3374 * Randomize first schedule time of the request to
3375 * spread the inode table initialization requests
3376 * better.
3377 */
3378 elr->lr_next_sched = jiffies + (prandom_u32() %
3379 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3380 return elr;
3381}
3382
3383int ext4_register_li_request(struct super_block *sb,
3384 ext4_group_t first_not_zeroed)
3385{
3386 struct ext4_sb_info *sbi = EXT4_SB(sb);
3387 struct ext4_li_request *elr = NULL;
3388 ext4_group_t ngroups = sbi->s_groups_count;
3389 int ret = 0;
3390
3391 mutex_lock(&ext4_li_mtx);
3392 if (sbi->s_li_request != NULL) {
3393 /*
3394 * Reset timeout so it can be computed again, because
3395 * s_li_wait_mult might have changed.
3396 */
3397 sbi->s_li_request->lr_timeout = 0;
3398 goto out;
3399 }
3400
3401 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3402 !test_opt(sb, INIT_INODE_TABLE))
3403 goto out;
3404
3405 elr = ext4_li_request_new(sb, first_not_zeroed);
3406 if (!elr) {
3407 ret = -ENOMEM;
3408 goto out;
3409 }
3410
3411 if (NULL == ext4_li_info) {
3412 ret = ext4_li_info_new();
3413 if (ret)
3414 goto out;
3415 }
3416
3417 mutex_lock(&ext4_li_info->li_list_mtx);
3418 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3419 mutex_unlock(&ext4_li_info->li_list_mtx);
3420
3421 sbi->s_li_request = elr;
3422 /*
3423 * set elr to NULL here since it has been inserted to
3424 * the request_list and the removal and free of it is
3425 * handled by ext4_clear_request_list from now on.
3426 */
3427 elr = NULL;
3428
3429 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3430 ret = ext4_run_lazyinit_thread();
3431 if (ret)
3432 goto out;
3433 }
3434out:
3435 mutex_unlock(&ext4_li_mtx);
3436 if (ret)
3437 kfree(elr);
3438 return ret;
3439}
3440
3441/*
3442 * We do not need to lock anything since this is called on
3443 * module unload.
3444 */
3445static void ext4_destroy_lazyinit_thread(void)
3446{
3447 /*
3448 * If thread exited earlier
3449 * there's nothing to be done.
3450 */
3451 if (!ext4_li_info || !ext4_lazyinit_task)
3452 return;
3453
3454 kthread_stop(ext4_lazyinit_task);
3455}
3456
3457static int set_journal_csum_feature_set(struct super_block *sb)
3458{
3459 int ret = 1;
3460 int compat, incompat;
3461 struct ext4_sb_info *sbi = EXT4_SB(sb);
3462
3463 if (ext4_has_metadata_csum(sb)) {
3464 /* journal checksum v3 */
3465 compat = 0;
3466 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3467 } else {
3468 /* journal checksum v1 */
3469 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3470 incompat = 0;
3471 }
3472
3473 jbd2_journal_clear_features(sbi->s_journal,
3474 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3475 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3476 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3477 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3478 ret = jbd2_journal_set_features(sbi->s_journal,
3479 compat, 0,
3480 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3481 incompat);
3482 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3483 ret = jbd2_journal_set_features(sbi->s_journal,
3484 compat, 0,
3485 incompat);
3486 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3487 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3488 } else {
3489 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3490 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3491 }
3492
3493 return ret;
3494}
3495
3496/*
3497 * Note: calculating the overhead so we can be compatible with
3498 * historical BSD practice is quite difficult in the face of
3499 * clusters/bigalloc. This is because multiple metadata blocks from
3500 * different block group can end up in the same allocation cluster.
3501 * Calculating the exact overhead in the face of clustered allocation
3502 * requires either O(all block bitmaps) in memory or O(number of block
3503 * groups**2) in time. We will still calculate the superblock for
3504 * older file systems --- and if we come across with a bigalloc file
3505 * system with zero in s_overhead_clusters the estimate will be close to
3506 * correct especially for very large cluster sizes --- but for newer
3507 * file systems, it's better to calculate this figure once at mkfs
3508 * time, and store it in the superblock. If the superblock value is
3509 * present (even for non-bigalloc file systems), we will use it.
3510 */
3511static int count_overhead(struct super_block *sb, ext4_group_t grp,
3512 char *buf)
3513{
3514 struct ext4_sb_info *sbi = EXT4_SB(sb);
3515 struct ext4_group_desc *gdp;
3516 ext4_fsblk_t first_block, last_block, b;
3517 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3518 int s, j, count = 0;
3519
3520 if (!ext4_has_feature_bigalloc(sb))
3521 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3522 sbi->s_itb_per_group + 2);
3523
3524 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3525 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3526 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3527 for (i = 0; i < ngroups; i++) {
3528 gdp = ext4_get_group_desc(sb, i, NULL);
3529 b = ext4_block_bitmap(sb, gdp);
3530 if (b >= first_block && b <= last_block) {
3531 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3532 count++;
3533 }
3534 b = ext4_inode_bitmap(sb, gdp);
3535 if (b >= first_block && b <= last_block) {
3536 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3537 count++;
3538 }
3539 b = ext4_inode_table(sb, gdp);
3540 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3541 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3542 int c = EXT4_B2C(sbi, b - first_block);
3543 ext4_set_bit(c, buf);
3544 count++;
3545 }
3546 if (i != grp)
3547 continue;
3548 s = 0;
3549 if (ext4_bg_has_super(sb, grp)) {
3550 ext4_set_bit(s++, buf);
3551 count++;
3552 }
3553 j = ext4_bg_num_gdb(sb, grp);
3554 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3555 ext4_error(sb, "Invalid number of block group "
3556 "descriptor blocks: %d", j);
3557 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3558 }
3559 count += j;
3560 for (; j > 0; j--)
3561 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3562 }
3563 if (!count)
3564 return 0;
3565 return EXT4_CLUSTERS_PER_GROUP(sb) -
3566 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3567}
3568
3569/*
3570 * Compute the overhead and stash it in sbi->s_overhead
3571 */
3572int ext4_calculate_overhead(struct super_block *sb)
3573{
3574 struct ext4_sb_info *sbi = EXT4_SB(sb);
3575 struct ext4_super_block *es = sbi->s_es;
3576 struct inode *j_inode;
3577 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3578 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3579 ext4_fsblk_t overhead = 0;
3580 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3581
3582 if (!buf)
3583 return -ENOMEM;
3584
3585 /*
3586 * Compute the overhead (FS structures). This is constant
3587 * for a given filesystem unless the number of block groups
3588 * changes so we cache the previous value until it does.
3589 */
3590
3591 /*
3592 * All of the blocks before first_data_block are overhead
3593 */
3594 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3595
3596 /*
3597 * Add the overhead found in each block group
3598 */
3599 for (i = 0; i < ngroups; i++) {
3600 int blks;
3601
3602 blks = count_overhead(sb, i, buf);
3603 overhead += blks;
3604 if (blks)
3605 memset(buf, 0, PAGE_SIZE);
3606 cond_resched();
3607 }
3608
3609 /*
3610 * Add the internal journal blocks whether the journal has been
3611 * loaded or not
3612 */
3613 if (sbi->s_journal && !sbi->journal_bdev)
3614 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3615 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3616 /* j_inum for internal journal is non-zero */
3617 j_inode = ext4_get_journal_inode(sb, j_inum);
3618 if (j_inode) {
3619 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3620 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3621 iput(j_inode);
3622 } else {
3623 ext4_msg(sb, KERN_ERR, "can't get journal size");
3624 }
3625 }
3626 sbi->s_overhead = overhead;
3627 smp_wmb();
3628 free_page((unsigned long) buf);
3629 return 0;
3630}
3631
3632static void ext4_set_resv_clusters(struct super_block *sb)
3633{
3634 ext4_fsblk_t resv_clusters;
3635 struct ext4_sb_info *sbi = EXT4_SB(sb);
3636
3637 /*
3638 * There's no need to reserve anything when we aren't using extents.
3639 * The space estimates are exact, there are no unwritten extents,
3640 * hole punching doesn't need new metadata... This is needed especially
3641 * to keep ext2/3 backward compatibility.
3642 */
3643 if (!ext4_has_feature_extents(sb))
3644 return;
3645 /*
3646 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3647 * This should cover the situations where we can not afford to run
3648 * out of space like for example punch hole, or converting
3649 * unwritten extents in delalloc path. In most cases such
3650 * allocation would require 1, or 2 blocks, higher numbers are
3651 * very rare.
3652 */
3653 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3654 sbi->s_cluster_bits);
3655
3656 do_div(resv_clusters, 50);
3657 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3658
3659 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3660}
3661
3662static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3663{
3664 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3665 char *orig_data = kstrdup(data, GFP_KERNEL);
3666 struct buffer_head *bh, **group_desc;
3667 struct ext4_super_block *es = NULL;
3668 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3669 struct flex_groups **flex_groups;
3670 ext4_fsblk_t block;
3671 ext4_fsblk_t sb_block = get_sb_block(&data);
3672 ext4_fsblk_t logical_sb_block;
3673 unsigned long offset = 0;
3674 unsigned long journal_devnum = 0;
3675 unsigned long def_mount_opts;
3676 struct inode *root;
3677 const char *descr;
3678 int ret = -ENOMEM;
3679 int blocksize, clustersize;
3680 unsigned int db_count;
3681 unsigned int i;
2356 ext4_show_quota_options(seq, sb);
2357 return 0;
2358}
2359
2360static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2361{
2362 return _ext4_show_options(seq, root->d_sb, 0);
2363}
2364
2365int ext4_seq_options_show(struct seq_file *seq, void *offset)
2366{
2367 struct super_block *sb = seq->private;
2368 int rc;
2369
2370 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2371 rc = _ext4_show_options(seq, sb, 1);
2372 seq_puts(seq, "\n");
2373 return rc;
2374}
2375
2376static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2377 int read_only)
2378{
2379 struct ext4_sb_info *sbi = EXT4_SB(sb);
2380 int err = 0;
2381
2382 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2383 ext4_msg(sb, KERN_ERR, "revision level too high, "
2384 "forcing read-only mode");
2385 err = -EROFS;
2386 }
2387 if (read_only)
2388 goto done;
2389 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2390 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2391 "running e2fsck is recommended");
2392 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2393 ext4_msg(sb, KERN_WARNING,
2394 "warning: mounting fs with errors, "
2395 "running e2fsck is recommended");
2396 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2397 le16_to_cpu(es->s_mnt_count) >=
2398 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2399 ext4_msg(sb, KERN_WARNING,
2400 "warning: maximal mount count reached, "
2401 "running e2fsck is recommended");
2402 else if (le32_to_cpu(es->s_checkinterval) &&
2403 (ext4_get_tstamp(es, s_lastcheck) +
2404 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2405 ext4_msg(sb, KERN_WARNING,
2406 "warning: checktime reached, "
2407 "running e2fsck is recommended");
2408 if (!sbi->s_journal)
2409 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2410 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2411 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2412 le16_add_cpu(&es->s_mnt_count, 1);
2413 ext4_update_tstamp(es, s_mtime);
2414 if (sbi->s_journal)
2415 ext4_set_feature_journal_needs_recovery(sb);
2416
2417 err = ext4_commit_super(sb, 1);
2418done:
2419 if (test_opt(sb, DEBUG))
2420 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2421 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2422 sb->s_blocksize,
2423 sbi->s_groups_count,
2424 EXT4_BLOCKS_PER_GROUP(sb),
2425 EXT4_INODES_PER_GROUP(sb),
2426 sbi->s_mount_opt, sbi->s_mount_opt2);
2427
2428 cleancache_init_fs(sb);
2429 return err;
2430}
2431
2432int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2433{
2434 struct ext4_sb_info *sbi = EXT4_SB(sb);
2435 struct flex_groups **old_groups, **new_groups;
2436 int size, i, j;
2437
2438 if (!sbi->s_log_groups_per_flex)
2439 return 0;
2440
2441 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2442 if (size <= sbi->s_flex_groups_allocated)
2443 return 0;
2444
2445 new_groups = kvzalloc(roundup_pow_of_two(size *
2446 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2447 if (!new_groups) {
2448 ext4_msg(sb, KERN_ERR,
2449 "not enough memory for %d flex group pointers", size);
2450 return -ENOMEM;
2451 }
2452 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2453 new_groups[i] = kvzalloc(roundup_pow_of_two(
2454 sizeof(struct flex_groups)),
2455 GFP_KERNEL);
2456 if (!new_groups[i]) {
2457 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2458 kvfree(new_groups[j]);
2459 kvfree(new_groups);
2460 ext4_msg(sb, KERN_ERR,
2461 "not enough memory for %d flex groups", size);
2462 return -ENOMEM;
2463 }
2464 }
2465 rcu_read_lock();
2466 old_groups = rcu_dereference(sbi->s_flex_groups);
2467 if (old_groups)
2468 memcpy(new_groups, old_groups,
2469 (sbi->s_flex_groups_allocated *
2470 sizeof(struct flex_groups *)));
2471 rcu_read_unlock();
2472 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2473 sbi->s_flex_groups_allocated = size;
2474 if (old_groups)
2475 ext4_kvfree_array_rcu(old_groups);
2476 return 0;
2477}
2478
2479static int ext4_fill_flex_info(struct super_block *sb)
2480{
2481 struct ext4_sb_info *sbi = EXT4_SB(sb);
2482 struct ext4_group_desc *gdp = NULL;
2483 struct flex_groups *fg;
2484 ext4_group_t flex_group;
2485 int i, err;
2486
2487 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2488 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2489 sbi->s_log_groups_per_flex = 0;
2490 return 1;
2491 }
2492
2493 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2494 if (err)
2495 goto failed;
2496
2497 for (i = 0; i < sbi->s_groups_count; i++) {
2498 gdp = ext4_get_group_desc(sb, i, NULL);
2499
2500 flex_group = ext4_flex_group(sbi, i);
2501 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2502 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2503 atomic64_add(ext4_free_group_clusters(sb, gdp),
2504 &fg->free_clusters);
2505 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2506 }
2507
2508 return 1;
2509failed:
2510 return 0;
2511}
2512
2513static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2514 struct ext4_group_desc *gdp)
2515{
2516 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2517 __u16 crc = 0;
2518 __le32 le_group = cpu_to_le32(block_group);
2519 struct ext4_sb_info *sbi = EXT4_SB(sb);
2520
2521 if (ext4_has_metadata_csum(sbi->s_sb)) {
2522 /* Use new metadata_csum algorithm */
2523 __u32 csum32;
2524 __u16 dummy_csum = 0;
2525
2526 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2527 sizeof(le_group));
2528 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2529 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2530 sizeof(dummy_csum));
2531 offset += sizeof(dummy_csum);
2532 if (offset < sbi->s_desc_size)
2533 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2534 sbi->s_desc_size - offset);
2535
2536 crc = csum32 & 0xFFFF;
2537 goto out;
2538 }
2539
2540 /* old crc16 code */
2541 if (!ext4_has_feature_gdt_csum(sb))
2542 return 0;
2543
2544 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2545 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2546 crc = crc16(crc, (__u8 *)gdp, offset);
2547 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2548 /* for checksum of struct ext4_group_desc do the rest...*/
2549 if (ext4_has_feature_64bit(sb) &&
2550 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2551 crc = crc16(crc, (__u8 *)gdp + offset,
2552 le16_to_cpu(sbi->s_es->s_desc_size) -
2553 offset);
2554
2555out:
2556 return cpu_to_le16(crc);
2557}
2558
2559int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2560 struct ext4_group_desc *gdp)
2561{
2562 if (ext4_has_group_desc_csum(sb) &&
2563 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2564 return 0;
2565
2566 return 1;
2567}
2568
2569void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2570 struct ext4_group_desc *gdp)
2571{
2572 if (!ext4_has_group_desc_csum(sb))
2573 return;
2574 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2575}
2576
2577/* Called at mount-time, super-block is locked */
2578static int ext4_check_descriptors(struct super_block *sb,
2579 ext4_fsblk_t sb_block,
2580 ext4_group_t *first_not_zeroed)
2581{
2582 struct ext4_sb_info *sbi = EXT4_SB(sb);
2583 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2584 ext4_fsblk_t last_block;
2585 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2586 ext4_fsblk_t block_bitmap;
2587 ext4_fsblk_t inode_bitmap;
2588 ext4_fsblk_t inode_table;
2589 int flexbg_flag = 0;
2590 ext4_group_t i, grp = sbi->s_groups_count;
2591
2592 if (ext4_has_feature_flex_bg(sb))
2593 flexbg_flag = 1;
2594
2595 ext4_debug("Checking group descriptors");
2596
2597 for (i = 0; i < sbi->s_groups_count; i++) {
2598 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2599
2600 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2601 last_block = ext4_blocks_count(sbi->s_es) - 1;
2602 else
2603 last_block = first_block +
2604 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2605
2606 if ((grp == sbi->s_groups_count) &&
2607 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2608 grp = i;
2609
2610 block_bitmap = ext4_block_bitmap(sb, gdp);
2611 if (block_bitmap == sb_block) {
2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2613 "Block bitmap for group %u overlaps "
2614 "superblock", i);
2615 if (!sb_rdonly(sb))
2616 return 0;
2617 }
2618 if (block_bitmap >= sb_block + 1 &&
2619 block_bitmap <= last_bg_block) {
2620 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2621 "Block bitmap for group %u overlaps "
2622 "block group descriptors", i);
2623 if (!sb_rdonly(sb))
2624 return 0;
2625 }
2626 if (block_bitmap < first_block || block_bitmap > last_block) {
2627 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2628 "Block bitmap for group %u not in group "
2629 "(block %llu)!", i, block_bitmap);
2630 return 0;
2631 }
2632 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2633 if (inode_bitmap == sb_block) {
2634 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2635 "Inode bitmap for group %u overlaps "
2636 "superblock", i);
2637 if (!sb_rdonly(sb))
2638 return 0;
2639 }
2640 if (inode_bitmap >= sb_block + 1 &&
2641 inode_bitmap <= last_bg_block) {
2642 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2643 "Inode bitmap for group %u overlaps "
2644 "block group descriptors", i);
2645 if (!sb_rdonly(sb))
2646 return 0;
2647 }
2648 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2649 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2650 "Inode bitmap for group %u not in group "
2651 "(block %llu)!", i, inode_bitmap);
2652 return 0;
2653 }
2654 inode_table = ext4_inode_table(sb, gdp);
2655 if (inode_table == sb_block) {
2656 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2657 "Inode table for group %u overlaps "
2658 "superblock", i);
2659 if (!sb_rdonly(sb))
2660 return 0;
2661 }
2662 if (inode_table >= sb_block + 1 &&
2663 inode_table <= last_bg_block) {
2664 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2665 "Inode table for group %u overlaps "
2666 "block group descriptors", i);
2667 if (!sb_rdonly(sb))
2668 return 0;
2669 }
2670 if (inode_table < first_block ||
2671 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2672 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2673 "Inode table for group %u not in group "
2674 "(block %llu)!", i, inode_table);
2675 return 0;
2676 }
2677 ext4_lock_group(sb, i);
2678 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2679 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2680 "Checksum for group %u failed (%u!=%u)",
2681 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2682 gdp)), le16_to_cpu(gdp->bg_checksum));
2683 if (!sb_rdonly(sb)) {
2684 ext4_unlock_group(sb, i);
2685 return 0;
2686 }
2687 }
2688 ext4_unlock_group(sb, i);
2689 if (!flexbg_flag)
2690 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2691 }
2692 if (NULL != first_not_zeroed)
2693 *first_not_zeroed = grp;
2694 return 1;
2695}
2696
2697/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2698 * the superblock) which were deleted from all directories, but held open by
2699 * a process at the time of a crash. We walk the list and try to delete these
2700 * inodes at recovery time (only with a read-write filesystem).
2701 *
2702 * In order to keep the orphan inode chain consistent during traversal (in
2703 * case of crash during recovery), we link each inode into the superblock
2704 * orphan list_head and handle it the same way as an inode deletion during
2705 * normal operation (which journals the operations for us).
2706 *
2707 * We only do an iget() and an iput() on each inode, which is very safe if we
2708 * accidentally point at an in-use or already deleted inode. The worst that
2709 * can happen in this case is that we get a "bit already cleared" message from
2710 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2711 * e2fsck was run on this filesystem, and it must have already done the orphan
2712 * inode cleanup for us, so we can safely abort without any further action.
2713 */
2714static void ext4_orphan_cleanup(struct super_block *sb,
2715 struct ext4_super_block *es)
2716{
2717 unsigned int s_flags = sb->s_flags;
2718 int ret, nr_orphans = 0, nr_truncates = 0;
2719#ifdef CONFIG_QUOTA
2720 int quota_update = 0;
2721 int i;
2722#endif
2723 if (!es->s_last_orphan) {
2724 jbd_debug(4, "no orphan inodes to clean up\n");
2725 return;
2726 }
2727
2728 if (bdev_read_only(sb->s_bdev)) {
2729 ext4_msg(sb, KERN_ERR, "write access "
2730 "unavailable, skipping orphan cleanup");
2731 return;
2732 }
2733
2734 /* Check if feature set would not allow a r/w mount */
2735 if (!ext4_feature_set_ok(sb, 0)) {
2736 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2737 "unknown ROCOMPAT features");
2738 return;
2739 }
2740
2741 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2742 /* don't clear list on RO mount w/ errors */
2743 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2744 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2745 "clearing orphan list.\n");
2746 es->s_last_orphan = 0;
2747 }
2748 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2749 return;
2750 }
2751
2752 if (s_flags & SB_RDONLY) {
2753 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2754 sb->s_flags &= ~SB_RDONLY;
2755 }
2756#ifdef CONFIG_QUOTA
2757 /* Needed for iput() to work correctly and not trash data */
2758 sb->s_flags |= SB_ACTIVE;
2759
2760 /*
2761 * Turn on quotas which were not enabled for read-only mounts if
2762 * filesystem has quota feature, so that they are updated correctly.
2763 */
2764 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2765 int ret = ext4_enable_quotas(sb);
2766
2767 if (!ret)
2768 quota_update = 1;
2769 else
2770 ext4_msg(sb, KERN_ERR,
2771 "Cannot turn on quotas: error %d", ret);
2772 }
2773
2774 /* Turn on journaled quotas used for old sytle */
2775 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2776 if (EXT4_SB(sb)->s_qf_names[i]) {
2777 int ret = ext4_quota_on_mount(sb, i);
2778
2779 if (!ret)
2780 quota_update = 1;
2781 else
2782 ext4_msg(sb, KERN_ERR,
2783 "Cannot turn on journaled "
2784 "quota: type %d: error %d", i, ret);
2785 }
2786 }
2787#endif
2788
2789 while (es->s_last_orphan) {
2790 struct inode *inode;
2791
2792 /*
2793 * We may have encountered an error during cleanup; if
2794 * so, skip the rest.
2795 */
2796 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2797 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2798 es->s_last_orphan = 0;
2799 break;
2800 }
2801
2802 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2803 if (IS_ERR(inode)) {
2804 es->s_last_orphan = 0;
2805 break;
2806 }
2807
2808 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2809 dquot_initialize(inode);
2810 if (inode->i_nlink) {
2811 if (test_opt(sb, DEBUG))
2812 ext4_msg(sb, KERN_DEBUG,
2813 "%s: truncating inode %lu to %lld bytes",
2814 __func__, inode->i_ino, inode->i_size);
2815 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2816 inode->i_ino, inode->i_size);
2817 inode_lock(inode);
2818 truncate_inode_pages(inode->i_mapping, inode->i_size);
2819 ret = ext4_truncate(inode);
2820 if (ret)
2821 ext4_std_error(inode->i_sb, ret);
2822 inode_unlock(inode);
2823 nr_truncates++;
2824 } else {
2825 if (test_opt(sb, DEBUG))
2826 ext4_msg(sb, KERN_DEBUG,
2827 "%s: deleting unreferenced inode %lu",
2828 __func__, inode->i_ino);
2829 jbd_debug(2, "deleting unreferenced inode %lu\n",
2830 inode->i_ino);
2831 nr_orphans++;
2832 }
2833 iput(inode); /* The delete magic happens here! */
2834 }
2835
2836#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2837
2838 if (nr_orphans)
2839 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2840 PLURAL(nr_orphans));
2841 if (nr_truncates)
2842 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2843 PLURAL(nr_truncates));
2844#ifdef CONFIG_QUOTA
2845 /* Turn off quotas if they were enabled for orphan cleanup */
2846 if (quota_update) {
2847 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2848 if (sb_dqopt(sb)->files[i])
2849 dquot_quota_off(sb, i);
2850 }
2851 }
2852#endif
2853 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2854}
2855
2856/*
2857 * Maximal extent format file size.
2858 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2859 * extent format containers, within a sector_t, and within i_blocks
2860 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2861 * so that won't be a limiting factor.
2862 *
2863 * However there is other limiting factor. We do store extents in the form
2864 * of starting block and length, hence the resulting length of the extent
2865 * covering maximum file size must fit into on-disk format containers as
2866 * well. Given that length is always by 1 unit bigger than max unit (because
2867 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2868 *
2869 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2870 */
2871static loff_t ext4_max_size(int blkbits, int has_huge_files)
2872{
2873 loff_t res;
2874 loff_t upper_limit = MAX_LFS_FILESIZE;
2875
2876 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2877
2878 if (!has_huge_files) {
2879 upper_limit = (1LL << 32) - 1;
2880
2881 /* total blocks in file system block size */
2882 upper_limit >>= (blkbits - 9);
2883 upper_limit <<= blkbits;
2884 }
2885
2886 /*
2887 * 32-bit extent-start container, ee_block. We lower the maxbytes
2888 * by one fs block, so ee_len can cover the extent of maximum file
2889 * size
2890 */
2891 res = (1LL << 32) - 1;
2892 res <<= blkbits;
2893
2894 /* Sanity check against vm- & vfs- imposed limits */
2895 if (res > upper_limit)
2896 res = upper_limit;
2897
2898 return res;
2899}
2900
2901/*
2902 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2903 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2904 * We need to be 1 filesystem block less than the 2^48 sector limit.
2905 */
2906static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2907{
2908 loff_t res = EXT4_NDIR_BLOCKS;
2909 int meta_blocks;
2910 loff_t upper_limit;
2911 /* This is calculated to be the largest file size for a dense, block
2912 * mapped file such that the file's total number of 512-byte sectors,
2913 * including data and all indirect blocks, does not exceed (2^48 - 1).
2914 *
2915 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2916 * number of 512-byte sectors of the file.
2917 */
2918
2919 if (!has_huge_files) {
2920 /*
2921 * !has_huge_files or implies that the inode i_block field
2922 * represents total file blocks in 2^32 512-byte sectors ==
2923 * size of vfs inode i_blocks * 8
2924 */
2925 upper_limit = (1LL << 32) - 1;
2926
2927 /* total blocks in file system block size */
2928 upper_limit >>= (bits - 9);
2929
2930 } else {
2931 /*
2932 * We use 48 bit ext4_inode i_blocks
2933 * With EXT4_HUGE_FILE_FL set the i_blocks
2934 * represent total number of blocks in
2935 * file system block size
2936 */
2937 upper_limit = (1LL << 48) - 1;
2938
2939 }
2940
2941 /* indirect blocks */
2942 meta_blocks = 1;
2943 /* double indirect blocks */
2944 meta_blocks += 1 + (1LL << (bits-2));
2945 /* tripple indirect blocks */
2946 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2947
2948 upper_limit -= meta_blocks;
2949 upper_limit <<= bits;
2950
2951 res += 1LL << (bits-2);
2952 res += 1LL << (2*(bits-2));
2953 res += 1LL << (3*(bits-2));
2954 res <<= bits;
2955 if (res > upper_limit)
2956 res = upper_limit;
2957
2958 if (res > MAX_LFS_FILESIZE)
2959 res = MAX_LFS_FILESIZE;
2960
2961 return res;
2962}
2963
2964static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2965 ext4_fsblk_t logical_sb_block, int nr)
2966{
2967 struct ext4_sb_info *sbi = EXT4_SB(sb);
2968 ext4_group_t bg, first_meta_bg;
2969 int has_super = 0;
2970
2971 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2972
2973 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2974 return logical_sb_block + nr + 1;
2975 bg = sbi->s_desc_per_block * nr;
2976 if (ext4_bg_has_super(sb, bg))
2977 has_super = 1;
2978
2979 /*
2980 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2981 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2982 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2983 * compensate.
2984 */
2985 if (sb->s_blocksize == 1024 && nr == 0 &&
2986 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2987 has_super++;
2988
2989 return (has_super + ext4_group_first_block_no(sb, bg));
2990}
2991
2992/**
2993 * ext4_get_stripe_size: Get the stripe size.
2994 * @sbi: In memory super block info
2995 *
2996 * If we have specified it via mount option, then
2997 * use the mount option value. If the value specified at mount time is
2998 * greater than the blocks per group use the super block value.
2999 * If the super block value is greater than blocks per group return 0.
3000 * Allocator needs it be less than blocks per group.
3001 *
3002 */
3003static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3004{
3005 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3006 unsigned long stripe_width =
3007 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3008 int ret;
3009
3010 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3011 ret = sbi->s_stripe;
3012 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3013 ret = stripe_width;
3014 else if (stride && stride <= sbi->s_blocks_per_group)
3015 ret = stride;
3016 else
3017 ret = 0;
3018
3019 /*
3020 * If the stripe width is 1, this makes no sense and
3021 * we set it to 0 to turn off stripe handling code.
3022 */
3023 if (ret <= 1)
3024 ret = 0;
3025
3026 return ret;
3027}
3028
3029/*
3030 * Check whether this filesystem can be mounted based on
3031 * the features present and the RDONLY/RDWR mount requested.
3032 * Returns 1 if this filesystem can be mounted as requested,
3033 * 0 if it cannot be.
3034 */
3035static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3036{
3037 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3038 ext4_msg(sb, KERN_ERR,
3039 "Couldn't mount because of "
3040 "unsupported optional features (%x)",
3041 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3042 ~EXT4_FEATURE_INCOMPAT_SUPP));
3043 return 0;
3044 }
3045
3046#ifndef CONFIG_UNICODE
3047 if (ext4_has_feature_casefold(sb)) {
3048 ext4_msg(sb, KERN_ERR,
3049 "Filesystem with casefold feature cannot be "
3050 "mounted without CONFIG_UNICODE");
3051 return 0;
3052 }
3053#endif
3054
3055 if (readonly)
3056 return 1;
3057
3058 if (ext4_has_feature_readonly(sb)) {
3059 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3060 sb->s_flags |= SB_RDONLY;
3061 return 1;
3062 }
3063
3064 /* Check that feature set is OK for a read-write mount */
3065 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3066 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3067 "unsupported optional features (%x)",
3068 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3069 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3070 return 0;
3071 }
3072 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3073 ext4_msg(sb, KERN_ERR,
3074 "Can't support bigalloc feature without "
3075 "extents feature\n");
3076 return 0;
3077 }
3078
3079#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3080 if (!readonly && (ext4_has_feature_quota(sb) ||
3081 ext4_has_feature_project(sb))) {
3082 ext4_msg(sb, KERN_ERR,
3083 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3084 return 0;
3085 }
3086#endif /* CONFIG_QUOTA */
3087 return 1;
3088}
3089
3090/*
3091 * This function is called once a day if we have errors logged
3092 * on the file system
3093 */
3094static void print_daily_error_info(struct timer_list *t)
3095{
3096 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3097 struct super_block *sb = sbi->s_sb;
3098 struct ext4_super_block *es = sbi->s_es;
3099
3100 if (es->s_error_count)
3101 /* fsck newer than v1.41.13 is needed to clean this condition. */
3102 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3103 le32_to_cpu(es->s_error_count));
3104 if (es->s_first_error_time) {
3105 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3106 sb->s_id,
3107 ext4_get_tstamp(es, s_first_error_time),
3108 (int) sizeof(es->s_first_error_func),
3109 es->s_first_error_func,
3110 le32_to_cpu(es->s_first_error_line));
3111 if (es->s_first_error_ino)
3112 printk(KERN_CONT ": inode %u",
3113 le32_to_cpu(es->s_first_error_ino));
3114 if (es->s_first_error_block)
3115 printk(KERN_CONT ": block %llu", (unsigned long long)
3116 le64_to_cpu(es->s_first_error_block));
3117 printk(KERN_CONT "\n");
3118 }
3119 if (es->s_last_error_time) {
3120 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3121 sb->s_id,
3122 ext4_get_tstamp(es, s_last_error_time),
3123 (int) sizeof(es->s_last_error_func),
3124 es->s_last_error_func,
3125 le32_to_cpu(es->s_last_error_line));
3126 if (es->s_last_error_ino)
3127 printk(KERN_CONT ": inode %u",
3128 le32_to_cpu(es->s_last_error_ino));
3129 if (es->s_last_error_block)
3130 printk(KERN_CONT ": block %llu", (unsigned long long)
3131 le64_to_cpu(es->s_last_error_block));
3132 printk(KERN_CONT "\n");
3133 }
3134 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3135}
3136
3137/* Find next suitable group and run ext4_init_inode_table */
3138static int ext4_run_li_request(struct ext4_li_request *elr)
3139{
3140 struct ext4_group_desc *gdp = NULL;
3141 ext4_group_t group, ngroups;
3142 struct super_block *sb;
3143 unsigned long timeout = 0;
3144 int ret = 0;
3145
3146 sb = elr->lr_super;
3147 ngroups = EXT4_SB(sb)->s_groups_count;
3148
3149 for (group = elr->lr_next_group; group < ngroups; group++) {
3150 gdp = ext4_get_group_desc(sb, group, NULL);
3151 if (!gdp) {
3152 ret = 1;
3153 break;
3154 }
3155
3156 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3157 break;
3158 }
3159
3160 if (group >= ngroups)
3161 ret = 1;
3162
3163 if (!ret) {
3164 timeout = jiffies;
3165 ret = ext4_init_inode_table(sb, group,
3166 elr->lr_timeout ? 0 : 1);
3167 if (elr->lr_timeout == 0) {
3168 timeout = (jiffies - timeout) *
3169 elr->lr_sbi->s_li_wait_mult;
3170 elr->lr_timeout = timeout;
3171 }
3172 elr->lr_next_sched = jiffies + elr->lr_timeout;
3173 elr->lr_next_group = group + 1;
3174 }
3175 return ret;
3176}
3177
3178/*
3179 * Remove lr_request from the list_request and free the
3180 * request structure. Should be called with li_list_mtx held
3181 */
3182static void ext4_remove_li_request(struct ext4_li_request *elr)
3183{
3184 struct ext4_sb_info *sbi;
3185
3186 if (!elr)
3187 return;
3188
3189 sbi = elr->lr_sbi;
3190
3191 list_del(&elr->lr_request);
3192 sbi->s_li_request = NULL;
3193 kfree(elr);
3194}
3195
3196static void ext4_unregister_li_request(struct super_block *sb)
3197{
3198 mutex_lock(&ext4_li_mtx);
3199 if (!ext4_li_info) {
3200 mutex_unlock(&ext4_li_mtx);
3201 return;
3202 }
3203
3204 mutex_lock(&ext4_li_info->li_list_mtx);
3205 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3206 mutex_unlock(&ext4_li_info->li_list_mtx);
3207 mutex_unlock(&ext4_li_mtx);
3208}
3209
3210static struct task_struct *ext4_lazyinit_task;
3211
3212/*
3213 * This is the function where ext4lazyinit thread lives. It walks
3214 * through the request list searching for next scheduled filesystem.
3215 * When such a fs is found, run the lazy initialization request
3216 * (ext4_rn_li_request) and keep track of the time spend in this
3217 * function. Based on that time we compute next schedule time of
3218 * the request. When walking through the list is complete, compute
3219 * next waking time and put itself into sleep.
3220 */
3221static int ext4_lazyinit_thread(void *arg)
3222{
3223 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3224 struct list_head *pos, *n;
3225 struct ext4_li_request *elr;
3226 unsigned long next_wakeup, cur;
3227
3228 BUG_ON(NULL == eli);
3229
3230cont_thread:
3231 while (true) {
3232 next_wakeup = MAX_JIFFY_OFFSET;
3233
3234 mutex_lock(&eli->li_list_mtx);
3235 if (list_empty(&eli->li_request_list)) {
3236 mutex_unlock(&eli->li_list_mtx);
3237 goto exit_thread;
3238 }
3239 list_for_each_safe(pos, n, &eli->li_request_list) {
3240 int err = 0;
3241 int progress = 0;
3242 elr = list_entry(pos, struct ext4_li_request,
3243 lr_request);
3244
3245 if (time_before(jiffies, elr->lr_next_sched)) {
3246 if (time_before(elr->lr_next_sched, next_wakeup))
3247 next_wakeup = elr->lr_next_sched;
3248 continue;
3249 }
3250 if (down_read_trylock(&elr->lr_super->s_umount)) {
3251 if (sb_start_write_trylock(elr->lr_super)) {
3252 progress = 1;
3253 /*
3254 * We hold sb->s_umount, sb can not
3255 * be removed from the list, it is
3256 * now safe to drop li_list_mtx
3257 */
3258 mutex_unlock(&eli->li_list_mtx);
3259 err = ext4_run_li_request(elr);
3260 sb_end_write(elr->lr_super);
3261 mutex_lock(&eli->li_list_mtx);
3262 n = pos->next;
3263 }
3264 up_read((&elr->lr_super->s_umount));
3265 }
3266 /* error, remove the lazy_init job */
3267 if (err) {
3268 ext4_remove_li_request(elr);
3269 continue;
3270 }
3271 if (!progress) {
3272 elr->lr_next_sched = jiffies +
3273 (prandom_u32()
3274 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3275 }
3276 if (time_before(elr->lr_next_sched, next_wakeup))
3277 next_wakeup = elr->lr_next_sched;
3278 }
3279 mutex_unlock(&eli->li_list_mtx);
3280
3281 try_to_freeze();
3282
3283 cur = jiffies;
3284 if ((time_after_eq(cur, next_wakeup)) ||
3285 (MAX_JIFFY_OFFSET == next_wakeup)) {
3286 cond_resched();
3287 continue;
3288 }
3289
3290 schedule_timeout_interruptible(next_wakeup - cur);
3291
3292 if (kthread_should_stop()) {
3293 ext4_clear_request_list();
3294 goto exit_thread;
3295 }
3296 }
3297
3298exit_thread:
3299 /*
3300 * It looks like the request list is empty, but we need
3301 * to check it under the li_list_mtx lock, to prevent any
3302 * additions into it, and of course we should lock ext4_li_mtx
3303 * to atomically free the list and ext4_li_info, because at
3304 * this point another ext4 filesystem could be registering
3305 * new one.
3306 */
3307 mutex_lock(&ext4_li_mtx);
3308 mutex_lock(&eli->li_list_mtx);
3309 if (!list_empty(&eli->li_request_list)) {
3310 mutex_unlock(&eli->li_list_mtx);
3311 mutex_unlock(&ext4_li_mtx);
3312 goto cont_thread;
3313 }
3314 mutex_unlock(&eli->li_list_mtx);
3315 kfree(ext4_li_info);
3316 ext4_li_info = NULL;
3317 mutex_unlock(&ext4_li_mtx);
3318
3319 return 0;
3320}
3321
3322static void ext4_clear_request_list(void)
3323{
3324 struct list_head *pos, *n;
3325 struct ext4_li_request *elr;
3326
3327 mutex_lock(&ext4_li_info->li_list_mtx);
3328 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3329 elr = list_entry(pos, struct ext4_li_request,
3330 lr_request);
3331 ext4_remove_li_request(elr);
3332 }
3333 mutex_unlock(&ext4_li_info->li_list_mtx);
3334}
3335
3336static int ext4_run_lazyinit_thread(void)
3337{
3338 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3339 ext4_li_info, "ext4lazyinit");
3340 if (IS_ERR(ext4_lazyinit_task)) {
3341 int err = PTR_ERR(ext4_lazyinit_task);
3342 ext4_clear_request_list();
3343 kfree(ext4_li_info);
3344 ext4_li_info = NULL;
3345 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3346 "initialization thread\n",
3347 err);
3348 return err;
3349 }
3350 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3351 return 0;
3352}
3353
3354/*
3355 * Check whether it make sense to run itable init. thread or not.
3356 * If there is at least one uninitialized inode table, return
3357 * corresponding group number, else the loop goes through all
3358 * groups and return total number of groups.
3359 */
3360static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3361{
3362 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3363 struct ext4_group_desc *gdp = NULL;
3364
3365 if (!ext4_has_group_desc_csum(sb))
3366 return ngroups;
3367
3368 for (group = 0; group < ngroups; group++) {
3369 gdp = ext4_get_group_desc(sb, group, NULL);
3370 if (!gdp)
3371 continue;
3372
3373 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3374 break;
3375 }
3376
3377 return group;
3378}
3379
3380static int ext4_li_info_new(void)
3381{
3382 struct ext4_lazy_init *eli = NULL;
3383
3384 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3385 if (!eli)
3386 return -ENOMEM;
3387
3388 INIT_LIST_HEAD(&eli->li_request_list);
3389 mutex_init(&eli->li_list_mtx);
3390
3391 eli->li_state |= EXT4_LAZYINIT_QUIT;
3392
3393 ext4_li_info = eli;
3394
3395 return 0;
3396}
3397
3398static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3399 ext4_group_t start)
3400{
3401 struct ext4_sb_info *sbi = EXT4_SB(sb);
3402 struct ext4_li_request *elr;
3403
3404 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3405 if (!elr)
3406 return NULL;
3407
3408 elr->lr_super = sb;
3409 elr->lr_sbi = sbi;
3410 elr->lr_next_group = start;
3411
3412 /*
3413 * Randomize first schedule time of the request to
3414 * spread the inode table initialization requests
3415 * better.
3416 */
3417 elr->lr_next_sched = jiffies + (prandom_u32() %
3418 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3419 return elr;
3420}
3421
3422int ext4_register_li_request(struct super_block *sb,
3423 ext4_group_t first_not_zeroed)
3424{
3425 struct ext4_sb_info *sbi = EXT4_SB(sb);
3426 struct ext4_li_request *elr = NULL;
3427 ext4_group_t ngroups = sbi->s_groups_count;
3428 int ret = 0;
3429
3430 mutex_lock(&ext4_li_mtx);
3431 if (sbi->s_li_request != NULL) {
3432 /*
3433 * Reset timeout so it can be computed again, because
3434 * s_li_wait_mult might have changed.
3435 */
3436 sbi->s_li_request->lr_timeout = 0;
3437 goto out;
3438 }
3439
3440 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3441 !test_opt(sb, INIT_INODE_TABLE))
3442 goto out;
3443
3444 elr = ext4_li_request_new(sb, first_not_zeroed);
3445 if (!elr) {
3446 ret = -ENOMEM;
3447 goto out;
3448 }
3449
3450 if (NULL == ext4_li_info) {
3451 ret = ext4_li_info_new();
3452 if (ret)
3453 goto out;
3454 }
3455
3456 mutex_lock(&ext4_li_info->li_list_mtx);
3457 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3458 mutex_unlock(&ext4_li_info->li_list_mtx);
3459
3460 sbi->s_li_request = elr;
3461 /*
3462 * set elr to NULL here since it has been inserted to
3463 * the request_list and the removal and free of it is
3464 * handled by ext4_clear_request_list from now on.
3465 */
3466 elr = NULL;
3467
3468 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3469 ret = ext4_run_lazyinit_thread();
3470 if (ret)
3471 goto out;
3472 }
3473out:
3474 mutex_unlock(&ext4_li_mtx);
3475 if (ret)
3476 kfree(elr);
3477 return ret;
3478}
3479
3480/*
3481 * We do not need to lock anything since this is called on
3482 * module unload.
3483 */
3484static void ext4_destroy_lazyinit_thread(void)
3485{
3486 /*
3487 * If thread exited earlier
3488 * there's nothing to be done.
3489 */
3490 if (!ext4_li_info || !ext4_lazyinit_task)
3491 return;
3492
3493 kthread_stop(ext4_lazyinit_task);
3494}
3495
3496static int set_journal_csum_feature_set(struct super_block *sb)
3497{
3498 int ret = 1;
3499 int compat, incompat;
3500 struct ext4_sb_info *sbi = EXT4_SB(sb);
3501
3502 if (ext4_has_metadata_csum(sb)) {
3503 /* journal checksum v3 */
3504 compat = 0;
3505 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3506 } else {
3507 /* journal checksum v1 */
3508 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3509 incompat = 0;
3510 }
3511
3512 jbd2_journal_clear_features(sbi->s_journal,
3513 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3514 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3515 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3516 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3517 ret = jbd2_journal_set_features(sbi->s_journal,
3518 compat, 0,
3519 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3520 incompat);
3521 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3522 ret = jbd2_journal_set_features(sbi->s_journal,
3523 compat, 0,
3524 incompat);
3525 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3526 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3527 } else {
3528 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3529 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3530 }
3531
3532 return ret;
3533}
3534
3535/*
3536 * Note: calculating the overhead so we can be compatible with
3537 * historical BSD practice is quite difficult in the face of
3538 * clusters/bigalloc. This is because multiple metadata blocks from
3539 * different block group can end up in the same allocation cluster.
3540 * Calculating the exact overhead in the face of clustered allocation
3541 * requires either O(all block bitmaps) in memory or O(number of block
3542 * groups**2) in time. We will still calculate the superblock for
3543 * older file systems --- and if we come across with a bigalloc file
3544 * system with zero in s_overhead_clusters the estimate will be close to
3545 * correct especially for very large cluster sizes --- but for newer
3546 * file systems, it's better to calculate this figure once at mkfs
3547 * time, and store it in the superblock. If the superblock value is
3548 * present (even for non-bigalloc file systems), we will use it.
3549 */
3550static int count_overhead(struct super_block *sb, ext4_group_t grp,
3551 char *buf)
3552{
3553 struct ext4_sb_info *sbi = EXT4_SB(sb);
3554 struct ext4_group_desc *gdp;
3555 ext4_fsblk_t first_block, last_block, b;
3556 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3557 int s, j, count = 0;
3558
3559 if (!ext4_has_feature_bigalloc(sb))
3560 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3561 sbi->s_itb_per_group + 2);
3562
3563 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3564 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3565 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3566 for (i = 0; i < ngroups; i++) {
3567 gdp = ext4_get_group_desc(sb, i, NULL);
3568 b = ext4_block_bitmap(sb, gdp);
3569 if (b >= first_block && b <= last_block) {
3570 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3571 count++;
3572 }
3573 b = ext4_inode_bitmap(sb, gdp);
3574 if (b >= first_block && b <= last_block) {
3575 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3576 count++;
3577 }
3578 b = ext4_inode_table(sb, gdp);
3579 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3580 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3581 int c = EXT4_B2C(sbi, b - first_block);
3582 ext4_set_bit(c, buf);
3583 count++;
3584 }
3585 if (i != grp)
3586 continue;
3587 s = 0;
3588 if (ext4_bg_has_super(sb, grp)) {
3589 ext4_set_bit(s++, buf);
3590 count++;
3591 }
3592 j = ext4_bg_num_gdb(sb, grp);
3593 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3594 ext4_error(sb, "Invalid number of block group "
3595 "descriptor blocks: %d", j);
3596 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3597 }
3598 count += j;
3599 for (; j > 0; j--)
3600 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3601 }
3602 if (!count)
3603 return 0;
3604 return EXT4_CLUSTERS_PER_GROUP(sb) -
3605 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3606}
3607
3608/*
3609 * Compute the overhead and stash it in sbi->s_overhead
3610 */
3611int ext4_calculate_overhead(struct super_block *sb)
3612{
3613 struct ext4_sb_info *sbi = EXT4_SB(sb);
3614 struct ext4_super_block *es = sbi->s_es;
3615 struct inode *j_inode;
3616 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3617 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3618 ext4_fsblk_t overhead = 0;
3619 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3620
3621 if (!buf)
3622 return -ENOMEM;
3623
3624 /*
3625 * Compute the overhead (FS structures). This is constant
3626 * for a given filesystem unless the number of block groups
3627 * changes so we cache the previous value until it does.
3628 */
3629
3630 /*
3631 * All of the blocks before first_data_block are overhead
3632 */
3633 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3634
3635 /*
3636 * Add the overhead found in each block group
3637 */
3638 for (i = 0; i < ngroups; i++) {
3639 int blks;
3640
3641 blks = count_overhead(sb, i, buf);
3642 overhead += blks;
3643 if (blks)
3644 memset(buf, 0, PAGE_SIZE);
3645 cond_resched();
3646 }
3647
3648 /*
3649 * Add the internal journal blocks whether the journal has been
3650 * loaded or not
3651 */
3652 if (sbi->s_journal && !sbi->journal_bdev)
3653 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3654 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3655 /* j_inum for internal journal is non-zero */
3656 j_inode = ext4_get_journal_inode(sb, j_inum);
3657 if (j_inode) {
3658 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3659 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3660 iput(j_inode);
3661 } else {
3662 ext4_msg(sb, KERN_ERR, "can't get journal size");
3663 }
3664 }
3665 sbi->s_overhead = overhead;
3666 smp_wmb();
3667 free_page((unsigned long) buf);
3668 return 0;
3669}
3670
3671static void ext4_set_resv_clusters(struct super_block *sb)
3672{
3673 ext4_fsblk_t resv_clusters;
3674 struct ext4_sb_info *sbi = EXT4_SB(sb);
3675
3676 /*
3677 * There's no need to reserve anything when we aren't using extents.
3678 * The space estimates are exact, there are no unwritten extents,
3679 * hole punching doesn't need new metadata... This is needed especially
3680 * to keep ext2/3 backward compatibility.
3681 */
3682 if (!ext4_has_feature_extents(sb))
3683 return;
3684 /*
3685 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3686 * This should cover the situations where we can not afford to run
3687 * out of space like for example punch hole, or converting
3688 * unwritten extents in delalloc path. In most cases such
3689 * allocation would require 1, or 2 blocks, higher numbers are
3690 * very rare.
3691 */
3692 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3693 sbi->s_cluster_bits);
3694
3695 do_div(resv_clusters, 50);
3696 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3697
3698 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3699}
3700
3701static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3702{
3703 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3704 char *orig_data = kstrdup(data, GFP_KERNEL);
3705 struct buffer_head *bh, **group_desc;
3706 struct ext4_super_block *es = NULL;
3707 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3708 struct flex_groups **flex_groups;
3709 ext4_fsblk_t block;
3710 ext4_fsblk_t sb_block = get_sb_block(&data);
3711 ext4_fsblk_t logical_sb_block;
3712 unsigned long offset = 0;
3713 unsigned long journal_devnum = 0;
3714 unsigned long def_mount_opts;
3715 struct inode *root;
3716 const char *descr;
3717 int ret = -ENOMEM;
3718 int blocksize, clustersize;
3719 unsigned int db_count;
3720 unsigned int i;
3682 int needs_recovery, has_huge_files;
3721 int needs_recovery, has_huge_files, has_bigalloc;
3683 __u64 blocks_count;
3684 int err = 0;
3685 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3686 ext4_group_t first_not_zeroed;
3687
3688 if ((data && !orig_data) || !sbi)
3689 goto out_free_base;
3690
3691 sbi->s_daxdev = dax_dev;
3692 sbi->s_blockgroup_lock =
3693 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3694 if (!sbi->s_blockgroup_lock)
3695 goto out_free_base;
3696
3697 sb->s_fs_info = sbi;
3698 sbi->s_sb = sb;
3699 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3700 sbi->s_sb_block = sb_block;
3701 if (sb->s_bdev->bd_part)
3702 sbi->s_sectors_written_start =
3703 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3704
3705 /* Cleanup superblock name */
3706 strreplace(sb->s_id, '/', '!');
3707
3708 /* -EINVAL is default */
3709 ret = -EINVAL;
3710 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3711 if (!blocksize) {
3712 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3713 goto out_fail;
3714 }
3715
3716 /*
3717 * The ext4 superblock will not be buffer aligned for other than 1kB
3718 * block sizes. We need to calculate the offset from buffer start.
3719 */
3720 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3721 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3722 offset = do_div(logical_sb_block, blocksize);
3723 } else {
3724 logical_sb_block = sb_block;
3725 }
3726
3727 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3728 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3729 goto out_fail;
3730 }
3731 /*
3732 * Note: s_es must be initialized as soon as possible because
3733 * some ext4 macro-instructions depend on its value
3734 */
3735 es = (struct ext4_super_block *) (bh->b_data + offset);
3736 sbi->s_es = es;
3737 sb->s_magic = le16_to_cpu(es->s_magic);
3738 if (sb->s_magic != EXT4_SUPER_MAGIC)
3739 goto cantfind_ext4;
3740 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3741
3742 /* Warn if metadata_csum and gdt_csum are both set. */
3743 if (ext4_has_feature_metadata_csum(sb) &&
3744 ext4_has_feature_gdt_csum(sb))
3745 ext4_warning(sb, "metadata_csum and uninit_bg are "
3746 "redundant flags; please run fsck.");
3747
3748 /* Check for a known checksum algorithm */
3749 if (!ext4_verify_csum_type(sb, es)) {
3750 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3751 "unknown checksum algorithm.");
3752 silent = 1;
3753 goto cantfind_ext4;
3754 }
3755
3756 /* Load the checksum driver */
3757 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3758 if (IS_ERR(sbi->s_chksum_driver)) {
3759 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3760 ret = PTR_ERR(sbi->s_chksum_driver);
3761 sbi->s_chksum_driver = NULL;
3762 goto failed_mount;
3763 }
3764
3765 /* Check superblock checksum */
3766 if (!ext4_superblock_csum_verify(sb, es)) {
3767 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3768 "invalid superblock checksum. Run e2fsck?");
3769 silent = 1;
3770 ret = -EFSBADCRC;
3771 goto cantfind_ext4;
3772 }
3773
3774 /* Precompute checksum seed for all metadata */
3775 if (ext4_has_feature_csum_seed(sb))
3776 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3777 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3778 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3779 sizeof(es->s_uuid));
3780
3781 /* Set defaults before we parse the mount options */
3782 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3783 set_opt(sb, INIT_INODE_TABLE);
3784 if (def_mount_opts & EXT4_DEFM_DEBUG)
3785 set_opt(sb, DEBUG);
3786 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3787 set_opt(sb, GRPID);
3788 if (def_mount_opts & EXT4_DEFM_UID16)
3789 set_opt(sb, NO_UID32);
3790 /* xattr user namespace & acls are now defaulted on */
3791 set_opt(sb, XATTR_USER);
3792#ifdef CONFIG_EXT4_FS_POSIX_ACL
3793 set_opt(sb, POSIX_ACL);
3794#endif
3795 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3796 if (ext4_has_metadata_csum(sb))
3797 set_opt(sb, JOURNAL_CHECKSUM);
3798
3799 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3800 set_opt(sb, JOURNAL_DATA);
3801 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3802 set_opt(sb, ORDERED_DATA);
3803 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3804 set_opt(sb, WRITEBACK_DATA);
3805
3806 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3807 set_opt(sb, ERRORS_PANIC);
3808 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3809 set_opt(sb, ERRORS_CONT);
3810 else
3811 set_opt(sb, ERRORS_RO);
3812 /* block_validity enabled by default; disable with noblock_validity */
3813 set_opt(sb, BLOCK_VALIDITY);
3814 if (def_mount_opts & EXT4_DEFM_DISCARD)
3815 set_opt(sb, DISCARD);
3816
3817 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3818 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3819 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3820 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3821 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3822
3823 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3824 set_opt(sb, BARRIER);
3825
3826 /*
3827 * enable delayed allocation by default
3828 * Use -o nodelalloc to turn it off
3829 */
3830 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3831 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3832 set_opt(sb, DELALLOC);
3833
3834 /*
3835 * set default s_li_wait_mult for lazyinit, for the case there is
3836 * no mount option specified.
3837 */
3838 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3839
3840 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3841
3842 if (blocksize == PAGE_SIZE)
3843 set_opt(sb, DIOREAD_NOLOCK);
3844
3845 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3846 blocksize > EXT4_MAX_BLOCK_SIZE) {
3847 ext4_msg(sb, KERN_ERR,
3848 "Unsupported filesystem blocksize %d (%d log_block_size)",
3849 blocksize, le32_to_cpu(es->s_log_block_size));
3850 goto failed_mount;
3851 }
3852
3853 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3854 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3855 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3856 } else {
3857 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3858 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3859 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3860 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3861 sbi->s_first_ino);
3862 goto failed_mount;
3863 }
3864 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3865 (!is_power_of_2(sbi->s_inode_size)) ||
3866 (sbi->s_inode_size > blocksize)) {
3867 ext4_msg(sb, KERN_ERR,
3868 "unsupported inode size: %d",
3869 sbi->s_inode_size);
3870 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3871 goto failed_mount;
3872 }
3873 /*
3874 * i_atime_extra is the last extra field available for
3875 * [acm]times in struct ext4_inode. Checking for that
3876 * field should suffice to ensure we have extra space
3877 * for all three.
3878 */
3879 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3880 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3881 sb->s_time_gran = 1;
3882 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3883 } else {
3884 sb->s_time_gran = NSEC_PER_SEC;
3885 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3886 }
3887 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3888 }
3889 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3890 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3891 EXT4_GOOD_OLD_INODE_SIZE;
3892 if (ext4_has_feature_extra_isize(sb)) {
3893 unsigned v, max = (sbi->s_inode_size -
3894 EXT4_GOOD_OLD_INODE_SIZE);
3895
3896 v = le16_to_cpu(es->s_want_extra_isize);
3897 if (v > max) {
3898 ext4_msg(sb, KERN_ERR,
3899 "bad s_want_extra_isize: %d", v);
3900 goto failed_mount;
3901 }
3902 if (sbi->s_want_extra_isize < v)
3903 sbi->s_want_extra_isize = v;
3904
3905 v = le16_to_cpu(es->s_min_extra_isize);
3906 if (v > max) {
3907 ext4_msg(sb, KERN_ERR,
3908 "bad s_min_extra_isize: %d", v);
3909 goto failed_mount;
3910 }
3911 if (sbi->s_want_extra_isize < v)
3912 sbi->s_want_extra_isize = v;
3913 }
3914 }
3915
3916 if (sbi->s_es->s_mount_opts[0]) {
3917 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3918 sizeof(sbi->s_es->s_mount_opts),
3919 GFP_KERNEL);
3920 if (!s_mount_opts)
3921 goto failed_mount;
3922 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3923 &journal_ioprio, 0)) {
3924 ext4_msg(sb, KERN_WARNING,
3925 "failed to parse options in superblock: %s",
3926 s_mount_opts);
3927 }
3928 kfree(s_mount_opts);
3929 }
3930 sbi->s_def_mount_opt = sbi->s_mount_opt;
3931 if (!parse_options((char *) data, sb, &journal_devnum,
3932 &journal_ioprio, 0))
3933 goto failed_mount;
3934
3935#ifdef CONFIG_UNICODE
3936 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3937 const struct ext4_sb_encodings *encoding_info;
3938 struct unicode_map *encoding;
3939 __u16 encoding_flags;
3940
3941 if (ext4_has_feature_encrypt(sb)) {
3942 ext4_msg(sb, KERN_ERR,
3943 "Can't mount with encoding and encryption");
3944 goto failed_mount;
3945 }
3946
3947 if (ext4_sb_read_encoding(es, &encoding_info,
3948 &encoding_flags)) {
3949 ext4_msg(sb, KERN_ERR,
3950 "Encoding requested by superblock is unknown");
3951 goto failed_mount;
3952 }
3953
3954 encoding = utf8_load(encoding_info->version);
3955 if (IS_ERR(encoding)) {
3956 ext4_msg(sb, KERN_ERR,
3957 "can't mount with superblock charset: %s-%s "
3958 "not supported by the kernel. flags: 0x%x.",
3959 encoding_info->name, encoding_info->version,
3960 encoding_flags);
3961 goto failed_mount;
3962 }
3963 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3964 "%s-%s with flags 0x%hx", encoding_info->name,
3965 encoding_info->version?:"\b", encoding_flags);
3966
3967 sbi->s_encoding = encoding;
3968 sbi->s_encoding_flags = encoding_flags;
3969 }
3970#endif
3971
3972 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3973 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
3722 __u64 blocks_count;
3723 int err = 0;
3724 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3725 ext4_group_t first_not_zeroed;
3726
3727 if ((data && !orig_data) || !sbi)
3728 goto out_free_base;
3729
3730 sbi->s_daxdev = dax_dev;
3731 sbi->s_blockgroup_lock =
3732 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3733 if (!sbi->s_blockgroup_lock)
3734 goto out_free_base;
3735
3736 sb->s_fs_info = sbi;
3737 sbi->s_sb = sb;
3738 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3739 sbi->s_sb_block = sb_block;
3740 if (sb->s_bdev->bd_part)
3741 sbi->s_sectors_written_start =
3742 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3743
3744 /* Cleanup superblock name */
3745 strreplace(sb->s_id, '/', '!');
3746
3747 /* -EINVAL is default */
3748 ret = -EINVAL;
3749 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3750 if (!blocksize) {
3751 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3752 goto out_fail;
3753 }
3754
3755 /*
3756 * The ext4 superblock will not be buffer aligned for other than 1kB
3757 * block sizes. We need to calculate the offset from buffer start.
3758 */
3759 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3760 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3761 offset = do_div(logical_sb_block, blocksize);
3762 } else {
3763 logical_sb_block = sb_block;
3764 }
3765
3766 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3767 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3768 goto out_fail;
3769 }
3770 /*
3771 * Note: s_es must be initialized as soon as possible because
3772 * some ext4 macro-instructions depend on its value
3773 */
3774 es = (struct ext4_super_block *) (bh->b_data + offset);
3775 sbi->s_es = es;
3776 sb->s_magic = le16_to_cpu(es->s_magic);
3777 if (sb->s_magic != EXT4_SUPER_MAGIC)
3778 goto cantfind_ext4;
3779 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3780
3781 /* Warn if metadata_csum and gdt_csum are both set. */
3782 if (ext4_has_feature_metadata_csum(sb) &&
3783 ext4_has_feature_gdt_csum(sb))
3784 ext4_warning(sb, "metadata_csum and uninit_bg are "
3785 "redundant flags; please run fsck.");
3786
3787 /* Check for a known checksum algorithm */
3788 if (!ext4_verify_csum_type(sb, es)) {
3789 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3790 "unknown checksum algorithm.");
3791 silent = 1;
3792 goto cantfind_ext4;
3793 }
3794
3795 /* Load the checksum driver */
3796 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3797 if (IS_ERR(sbi->s_chksum_driver)) {
3798 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3799 ret = PTR_ERR(sbi->s_chksum_driver);
3800 sbi->s_chksum_driver = NULL;
3801 goto failed_mount;
3802 }
3803
3804 /* Check superblock checksum */
3805 if (!ext4_superblock_csum_verify(sb, es)) {
3806 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3807 "invalid superblock checksum. Run e2fsck?");
3808 silent = 1;
3809 ret = -EFSBADCRC;
3810 goto cantfind_ext4;
3811 }
3812
3813 /* Precompute checksum seed for all metadata */
3814 if (ext4_has_feature_csum_seed(sb))
3815 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3816 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3817 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3818 sizeof(es->s_uuid));
3819
3820 /* Set defaults before we parse the mount options */
3821 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3822 set_opt(sb, INIT_INODE_TABLE);
3823 if (def_mount_opts & EXT4_DEFM_DEBUG)
3824 set_opt(sb, DEBUG);
3825 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3826 set_opt(sb, GRPID);
3827 if (def_mount_opts & EXT4_DEFM_UID16)
3828 set_opt(sb, NO_UID32);
3829 /* xattr user namespace & acls are now defaulted on */
3830 set_opt(sb, XATTR_USER);
3831#ifdef CONFIG_EXT4_FS_POSIX_ACL
3832 set_opt(sb, POSIX_ACL);
3833#endif
3834 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3835 if (ext4_has_metadata_csum(sb))
3836 set_opt(sb, JOURNAL_CHECKSUM);
3837
3838 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3839 set_opt(sb, JOURNAL_DATA);
3840 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3841 set_opt(sb, ORDERED_DATA);
3842 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3843 set_opt(sb, WRITEBACK_DATA);
3844
3845 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3846 set_opt(sb, ERRORS_PANIC);
3847 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3848 set_opt(sb, ERRORS_CONT);
3849 else
3850 set_opt(sb, ERRORS_RO);
3851 /* block_validity enabled by default; disable with noblock_validity */
3852 set_opt(sb, BLOCK_VALIDITY);
3853 if (def_mount_opts & EXT4_DEFM_DISCARD)
3854 set_opt(sb, DISCARD);
3855
3856 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3857 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3858 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3859 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3860 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3861
3862 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3863 set_opt(sb, BARRIER);
3864
3865 /*
3866 * enable delayed allocation by default
3867 * Use -o nodelalloc to turn it off
3868 */
3869 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3870 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3871 set_opt(sb, DELALLOC);
3872
3873 /*
3874 * set default s_li_wait_mult for lazyinit, for the case there is
3875 * no mount option specified.
3876 */
3877 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3878
3879 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3880
3881 if (blocksize == PAGE_SIZE)
3882 set_opt(sb, DIOREAD_NOLOCK);
3883
3884 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3885 blocksize > EXT4_MAX_BLOCK_SIZE) {
3886 ext4_msg(sb, KERN_ERR,
3887 "Unsupported filesystem blocksize %d (%d log_block_size)",
3888 blocksize, le32_to_cpu(es->s_log_block_size));
3889 goto failed_mount;
3890 }
3891
3892 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3893 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3894 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3895 } else {
3896 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3897 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3898 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3899 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3900 sbi->s_first_ino);
3901 goto failed_mount;
3902 }
3903 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3904 (!is_power_of_2(sbi->s_inode_size)) ||
3905 (sbi->s_inode_size > blocksize)) {
3906 ext4_msg(sb, KERN_ERR,
3907 "unsupported inode size: %d",
3908 sbi->s_inode_size);
3909 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3910 goto failed_mount;
3911 }
3912 /*
3913 * i_atime_extra is the last extra field available for
3914 * [acm]times in struct ext4_inode. Checking for that
3915 * field should suffice to ensure we have extra space
3916 * for all three.
3917 */
3918 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3919 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3920 sb->s_time_gran = 1;
3921 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3922 } else {
3923 sb->s_time_gran = NSEC_PER_SEC;
3924 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3925 }
3926 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3927 }
3928 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3929 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3930 EXT4_GOOD_OLD_INODE_SIZE;
3931 if (ext4_has_feature_extra_isize(sb)) {
3932 unsigned v, max = (sbi->s_inode_size -
3933 EXT4_GOOD_OLD_INODE_SIZE);
3934
3935 v = le16_to_cpu(es->s_want_extra_isize);
3936 if (v > max) {
3937 ext4_msg(sb, KERN_ERR,
3938 "bad s_want_extra_isize: %d", v);
3939 goto failed_mount;
3940 }
3941 if (sbi->s_want_extra_isize < v)
3942 sbi->s_want_extra_isize = v;
3943
3944 v = le16_to_cpu(es->s_min_extra_isize);
3945 if (v > max) {
3946 ext4_msg(sb, KERN_ERR,
3947 "bad s_min_extra_isize: %d", v);
3948 goto failed_mount;
3949 }
3950 if (sbi->s_want_extra_isize < v)
3951 sbi->s_want_extra_isize = v;
3952 }
3953 }
3954
3955 if (sbi->s_es->s_mount_opts[0]) {
3956 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3957 sizeof(sbi->s_es->s_mount_opts),
3958 GFP_KERNEL);
3959 if (!s_mount_opts)
3960 goto failed_mount;
3961 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3962 &journal_ioprio, 0)) {
3963 ext4_msg(sb, KERN_WARNING,
3964 "failed to parse options in superblock: %s",
3965 s_mount_opts);
3966 }
3967 kfree(s_mount_opts);
3968 }
3969 sbi->s_def_mount_opt = sbi->s_mount_opt;
3970 if (!parse_options((char *) data, sb, &journal_devnum,
3971 &journal_ioprio, 0))
3972 goto failed_mount;
3973
3974#ifdef CONFIG_UNICODE
3975 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3976 const struct ext4_sb_encodings *encoding_info;
3977 struct unicode_map *encoding;
3978 __u16 encoding_flags;
3979
3980 if (ext4_has_feature_encrypt(sb)) {
3981 ext4_msg(sb, KERN_ERR,
3982 "Can't mount with encoding and encryption");
3983 goto failed_mount;
3984 }
3985
3986 if (ext4_sb_read_encoding(es, &encoding_info,
3987 &encoding_flags)) {
3988 ext4_msg(sb, KERN_ERR,
3989 "Encoding requested by superblock is unknown");
3990 goto failed_mount;
3991 }
3992
3993 encoding = utf8_load(encoding_info->version);
3994 if (IS_ERR(encoding)) {
3995 ext4_msg(sb, KERN_ERR,
3996 "can't mount with superblock charset: %s-%s "
3997 "not supported by the kernel. flags: 0x%x.",
3998 encoding_info->name, encoding_info->version,
3999 encoding_flags);
4000 goto failed_mount;
4001 }
4002 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4003 "%s-%s with flags 0x%hx", encoding_info->name,
4004 encoding_info->version?:"\b", encoding_flags);
4005
4006 sbi->s_encoding = encoding;
4007 sbi->s_encoding_flags = encoding_flags;
4008 }
4009#endif
4010
4011 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4012 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
3974 /* can't mount with both data=journal and dioread_nolock. */
3975 clear_opt(sb, DIOREAD_NOLOCK);
3976 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3977 ext4_msg(sb, KERN_ERR, "can't mount with "
3978 "both data=journal and delalloc");
3979 goto failed_mount;
3980 }
4013 clear_opt(sb, DIOREAD_NOLOCK);
4014 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4015 ext4_msg(sb, KERN_ERR, "can't mount with "
4016 "both data=journal and delalloc");
4017 goto failed_mount;
4018 }
4019 if (test_opt(sb, DIOREAD_NOLOCK)) {
4020 ext4_msg(sb, KERN_ERR, "can't mount with "
4021 "both data=journal and dioread_nolock");
4022 goto failed_mount;
4023 }
3981 if (test_opt(sb, DAX)) {
3982 ext4_msg(sb, KERN_ERR, "can't mount with "
3983 "both data=journal and dax");
3984 goto failed_mount;
3985 }
3986 if (ext4_has_feature_encrypt(sb)) {
3987 ext4_msg(sb, KERN_WARNING,
3988 "encrypted files will use data=ordered "
3989 "instead of data journaling mode");
3990 }
3991 if (test_opt(sb, DELALLOC))
3992 clear_opt(sb, DELALLOC);
3993 } else {
3994 sb->s_iflags |= SB_I_CGROUPWB;
3995 }
3996
3997 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3998 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3999
4000 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4001 (ext4_has_compat_features(sb) ||
4002 ext4_has_ro_compat_features(sb) ||
4003 ext4_has_incompat_features(sb)))
4004 ext4_msg(sb, KERN_WARNING,
4005 "feature flags set on rev 0 fs, "
4006 "running e2fsck is recommended");
4007
4008 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4009 set_opt2(sb, HURD_COMPAT);
4010 if (ext4_has_feature_64bit(sb)) {
4011 ext4_msg(sb, KERN_ERR,
4012 "The Hurd can't support 64-bit file systems");
4013 goto failed_mount;
4014 }
4015
4016 /*
4017 * ea_inode feature uses l_i_version field which is not
4018 * available in HURD_COMPAT mode.
4019 */
4020 if (ext4_has_feature_ea_inode(sb)) {
4021 ext4_msg(sb, KERN_ERR,
4022 "ea_inode feature is not supported for Hurd");
4023 goto failed_mount;
4024 }
4025 }
4026
4027 if (IS_EXT2_SB(sb)) {
4028 if (ext2_feature_set_ok(sb))
4029 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4030 "using the ext4 subsystem");
4031 else {
4032 /*
4033 * If we're probing be silent, if this looks like
4034 * it's actually an ext[34] filesystem.
4035 */
4036 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4037 goto failed_mount;
4038 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4039 "to feature incompatibilities");
4040 goto failed_mount;
4041 }
4042 }
4043
4044 if (IS_EXT3_SB(sb)) {
4045 if (ext3_feature_set_ok(sb))
4046 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4047 "using the ext4 subsystem");
4048 else {
4049 /*
4050 * If we're probing be silent, if this looks like
4051 * it's actually an ext4 filesystem.
4052 */
4053 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4054 goto failed_mount;
4055 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4056 "to feature incompatibilities");
4057 goto failed_mount;
4058 }
4059 }
4060
4061 /*
4062 * Check feature flags regardless of the revision level, since we
4063 * previously didn't change the revision level when setting the flags,
4064 * so there is a chance incompat flags are set on a rev 0 filesystem.
4065 */
4066 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4067 goto failed_mount;
4068
4069 if (le32_to_cpu(es->s_log_block_size) >
4070 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4071 ext4_msg(sb, KERN_ERR,
4072 "Invalid log block size: %u",
4073 le32_to_cpu(es->s_log_block_size));
4074 goto failed_mount;
4075 }
4076 if (le32_to_cpu(es->s_log_cluster_size) >
4077 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4078 ext4_msg(sb, KERN_ERR,
4079 "Invalid log cluster size: %u",
4080 le32_to_cpu(es->s_log_cluster_size));
4081 goto failed_mount;
4082 }
4083
4084 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4085 ext4_msg(sb, KERN_ERR,
4086 "Number of reserved GDT blocks insanely large: %d",
4087 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4088 goto failed_mount;
4089 }
4090
4091 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4092 if (ext4_has_feature_inline_data(sb)) {
4093 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4094 " that may contain inline data");
4095 goto failed_mount;
4096 }
4097 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4098 ext4_msg(sb, KERN_ERR,
4099 "DAX unsupported by block device.");
4100 goto failed_mount;
4101 }
4102 }
4103
4104 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4105 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4106 es->s_encryption_level);
4107 goto failed_mount;
4108 }
4109
4110 if (sb->s_blocksize != blocksize) {
4111 /* Validate the filesystem blocksize */
4112 if (!sb_set_blocksize(sb, blocksize)) {
4113 ext4_msg(sb, KERN_ERR, "bad block size %d",
4114 blocksize);
4115 goto failed_mount;
4116 }
4117
4118 brelse(bh);
4119 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4120 offset = do_div(logical_sb_block, blocksize);
4121 bh = sb_bread_unmovable(sb, logical_sb_block);
4122 if (!bh) {
4123 ext4_msg(sb, KERN_ERR,
4124 "Can't read superblock on 2nd try");
4125 goto failed_mount;
4126 }
4127 es = (struct ext4_super_block *)(bh->b_data + offset);
4128 sbi->s_es = es;
4129 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4130 ext4_msg(sb, KERN_ERR,
4131 "Magic mismatch, very weird!");
4132 goto failed_mount;
4133 }
4134 }
4135
4136 has_huge_files = ext4_has_feature_huge_file(sb);
4137 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4138 has_huge_files);
4139 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4140
4141 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4142 if (ext4_has_feature_64bit(sb)) {
4143 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4144 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4145 !is_power_of_2(sbi->s_desc_size)) {
4146 ext4_msg(sb, KERN_ERR,
4147 "unsupported descriptor size %lu",
4148 sbi->s_desc_size);
4149 goto failed_mount;
4150 }
4151 } else
4152 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4153
4154 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4155 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4156
4157 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4158 if (sbi->s_inodes_per_block == 0)
4159 goto cantfind_ext4;
4160 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4161 sbi->s_inodes_per_group > blocksize * 8) {
4162 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4163 sbi->s_inodes_per_group);
4164 goto failed_mount;
4165 }
4166 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4167 sbi->s_inodes_per_block;
4168 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4169 sbi->s_sbh = bh;
4170 sbi->s_mount_state = le16_to_cpu(es->s_state);
4171 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4172 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4173
4174 for (i = 0; i < 4; i++)
4175 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4176 sbi->s_def_hash_version = es->s_def_hash_version;
4177 if (ext4_has_feature_dir_index(sb)) {
4178 i = le32_to_cpu(es->s_flags);
4179 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4180 sbi->s_hash_unsigned = 3;
4181 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4182#ifdef __CHAR_UNSIGNED__
4183 if (!sb_rdonly(sb))
4184 es->s_flags |=
4185 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4186 sbi->s_hash_unsigned = 3;
4187#else
4188 if (!sb_rdonly(sb))
4189 es->s_flags |=
4190 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4191#endif
4192 }
4193 }
4194
4195 /* Handle clustersize */
4196 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4024 if (test_opt(sb, DAX)) {
4025 ext4_msg(sb, KERN_ERR, "can't mount with "
4026 "both data=journal and dax");
4027 goto failed_mount;
4028 }
4029 if (ext4_has_feature_encrypt(sb)) {
4030 ext4_msg(sb, KERN_WARNING,
4031 "encrypted files will use data=ordered "
4032 "instead of data journaling mode");
4033 }
4034 if (test_opt(sb, DELALLOC))
4035 clear_opt(sb, DELALLOC);
4036 } else {
4037 sb->s_iflags |= SB_I_CGROUPWB;
4038 }
4039
4040 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4041 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4042
4043 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4044 (ext4_has_compat_features(sb) ||
4045 ext4_has_ro_compat_features(sb) ||
4046 ext4_has_incompat_features(sb)))
4047 ext4_msg(sb, KERN_WARNING,
4048 "feature flags set on rev 0 fs, "
4049 "running e2fsck is recommended");
4050
4051 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4052 set_opt2(sb, HURD_COMPAT);
4053 if (ext4_has_feature_64bit(sb)) {
4054 ext4_msg(sb, KERN_ERR,
4055 "The Hurd can't support 64-bit file systems");
4056 goto failed_mount;
4057 }
4058
4059 /*
4060 * ea_inode feature uses l_i_version field which is not
4061 * available in HURD_COMPAT mode.
4062 */
4063 if (ext4_has_feature_ea_inode(sb)) {
4064 ext4_msg(sb, KERN_ERR,
4065 "ea_inode feature is not supported for Hurd");
4066 goto failed_mount;
4067 }
4068 }
4069
4070 if (IS_EXT2_SB(sb)) {
4071 if (ext2_feature_set_ok(sb))
4072 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4073 "using the ext4 subsystem");
4074 else {
4075 /*
4076 * If we're probing be silent, if this looks like
4077 * it's actually an ext[34] filesystem.
4078 */
4079 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4080 goto failed_mount;
4081 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4082 "to feature incompatibilities");
4083 goto failed_mount;
4084 }
4085 }
4086
4087 if (IS_EXT3_SB(sb)) {
4088 if (ext3_feature_set_ok(sb))
4089 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4090 "using the ext4 subsystem");
4091 else {
4092 /*
4093 * If we're probing be silent, if this looks like
4094 * it's actually an ext4 filesystem.
4095 */
4096 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4097 goto failed_mount;
4098 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4099 "to feature incompatibilities");
4100 goto failed_mount;
4101 }
4102 }
4103
4104 /*
4105 * Check feature flags regardless of the revision level, since we
4106 * previously didn't change the revision level when setting the flags,
4107 * so there is a chance incompat flags are set on a rev 0 filesystem.
4108 */
4109 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4110 goto failed_mount;
4111
4112 if (le32_to_cpu(es->s_log_block_size) >
4113 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4114 ext4_msg(sb, KERN_ERR,
4115 "Invalid log block size: %u",
4116 le32_to_cpu(es->s_log_block_size));
4117 goto failed_mount;
4118 }
4119 if (le32_to_cpu(es->s_log_cluster_size) >
4120 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4121 ext4_msg(sb, KERN_ERR,
4122 "Invalid log cluster size: %u",
4123 le32_to_cpu(es->s_log_cluster_size));
4124 goto failed_mount;
4125 }
4126
4127 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4128 ext4_msg(sb, KERN_ERR,
4129 "Number of reserved GDT blocks insanely large: %d",
4130 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4131 goto failed_mount;
4132 }
4133
4134 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4135 if (ext4_has_feature_inline_data(sb)) {
4136 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4137 " that may contain inline data");
4138 goto failed_mount;
4139 }
4140 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4141 ext4_msg(sb, KERN_ERR,
4142 "DAX unsupported by block device.");
4143 goto failed_mount;
4144 }
4145 }
4146
4147 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4148 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4149 es->s_encryption_level);
4150 goto failed_mount;
4151 }
4152
4153 if (sb->s_blocksize != blocksize) {
4154 /* Validate the filesystem blocksize */
4155 if (!sb_set_blocksize(sb, blocksize)) {
4156 ext4_msg(sb, KERN_ERR, "bad block size %d",
4157 blocksize);
4158 goto failed_mount;
4159 }
4160
4161 brelse(bh);
4162 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4163 offset = do_div(logical_sb_block, blocksize);
4164 bh = sb_bread_unmovable(sb, logical_sb_block);
4165 if (!bh) {
4166 ext4_msg(sb, KERN_ERR,
4167 "Can't read superblock on 2nd try");
4168 goto failed_mount;
4169 }
4170 es = (struct ext4_super_block *)(bh->b_data + offset);
4171 sbi->s_es = es;
4172 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4173 ext4_msg(sb, KERN_ERR,
4174 "Magic mismatch, very weird!");
4175 goto failed_mount;
4176 }
4177 }
4178
4179 has_huge_files = ext4_has_feature_huge_file(sb);
4180 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4181 has_huge_files);
4182 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4183
4184 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4185 if (ext4_has_feature_64bit(sb)) {
4186 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4187 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4188 !is_power_of_2(sbi->s_desc_size)) {
4189 ext4_msg(sb, KERN_ERR,
4190 "unsupported descriptor size %lu",
4191 sbi->s_desc_size);
4192 goto failed_mount;
4193 }
4194 } else
4195 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4196
4197 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4198 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4199
4200 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4201 if (sbi->s_inodes_per_block == 0)
4202 goto cantfind_ext4;
4203 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4204 sbi->s_inodes_per_group > blocksize * 8) {
4205 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4206 sbi->s_inodes_per_group);
4207 goto failed_mount;
4208 }
4209 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4210 sbi->s_inodes_per_block;
4211 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4212 sbi->s_sbh = bh;
4213 sbi->s_mount_state = le16_to_cpu(es->s_state);
4214 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4215 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4216
4217 for (i = 0; i < 4; i++)
4218 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4219 sbi->s_def_hash_version = es->s_def_hash_version;
4220 if (ext4_has_feature_dir_index(sb)) {
4221 i = le32_to_cpu(es->s_flags);
4222 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4223 sbi->s_hash_unsigned = 3;
4224 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4225#ifdef __CHAR_UNSIGNED__
4226 if (!sb_rdonly(sb))
4227 es->s_flags |=
4228 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4229 sbi->s_hash_unsigned = 3;
4230#else
4231 if (!sb_rdonly(sb))
4232 es->s_flags |=
4233 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4234#endif
4235 }
4236 }
4237
4238 /* Handle clustersize */
4239 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4197 if (ext4_has_feature_bigalloc(sb)) {
4240 has_bigalloc = ext4_has_feature_bigalloc(sb);
4241 if (has_bigalloc) {
4198 if (clustersize < blocksize) {
4199 ext4_msg(sb, KERN_ERR,
4200 "cluster size (%d) smaller than "
4201 "block size (%d)", clustersize, blocksize);
4202 goto failed_mount;
4203 }
4204 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4205 le32_to_cpu(es->s_log_block_size);
4206 sbi->s_clusters_per_group =
4207 le32_to_cpu(es->s_clusters_per_group);
4208 if (sbi->s_clusters_per_group > blocksize * 8) {
4209 ext4_msg(sb, KERN_ERR,
4210 "#clusters per group too big: %lu",
4211 sbi->s_clusters_per_group);
4212 goto failed_mount;
4213 }
4214 if (sbi->s_blocks_per_group !=
4215 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4216 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4217 "clusters per group (%lu) inconsistent",
4218 sbi->s_blocks_per_group,
4219 sbi->s_clusters_per_group);
4220 goto failed_mount;
4221 }
4222 } else {
4223 if (clustersize != blocksize) {
4224 ext4_msg(sb, KERN_ERR,
4225 "fragment/cluster size (%d) != "
4226 "block size (%d)", clustersize, blocksize);
4227 goto failed_mount;
4228 }
4229 if (sbi->s_blocks_per_group > blocksize * 8) {
4230 ext4_msg(sb, KERN_ERR,
4231 "#blocks per group too big: %lu",
4232 sbi->s_blocks_per_group);
4233 goto failed_mount;
4234 }
4235 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4236 sbi->s_cluster_bits = 0;
4237 }
4238 sbi->s_cluster_ratio = clustersize / blocksize;
4239
4240 /* Do we have standard group size of clustersize * 8 blocks ? */
4241 if (sbi->s_blocks_per_group == clustersize << 3)
4242 set_opt2(sb, STD_GROUP_SIZE);
4243
4244 /*
4245 * Test whether we have more sectors than will fit in sector_t,
4246 * and whether the max offset is addressable by the page cache.
4247 */
4248 err = generic_check_addressable(sb->s_blocksize_bits,
4249 ext4_blocks_count(es));
4250 if (err) {
4251 ext4_msg(sb, KERN_ERR, "filesystem"
4252 " too large to mount safely on this system");
4253 goto failed_mount;
4254 }
4255
4256 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4257 goto cantfind_ext4;
4258
4259 /* check blocks count against device size */
4260 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4261 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4262 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4263 "exceeds size of device (%llu blocks)",
4264 ext4_blocks_count(es), blocks_count);
4265 goto failed_mount;
4266 }
4267
4268 /*
4269 * It makes no sense for the first data block to be beyond the end
4270 * of the filesystem.
4271 */
4272 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4273 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4274 "block %u is beyond end of filesystem (%llu)",
4275 le32_to_cpu(es->s_first_data_block),
4276 ext4_blocks_count(es));
4277 goto failed_mount;
4278 }
4279 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4280 (sbi->s_cluster_ratio == 1)) {
4281 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4282 "block is 0 with a 1k block and cluster size");
4283 goto failed_mount;
4284 }
4285
4286 blocks_count = (ext4_blocks_count(es) -
4287 le32_to_cpu(es->s_first_data_block) +
4288 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4289 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4290 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4291 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4292 "(block count %llu, first data block %u, "
4293 "blocks per group %lu)", blocks_count,
4294 ext4_blocks_count(es),
4295 le32_to_cpu(es->s_first_data_block),
4296 EXT4_BLOCKS_PER_GROUP(sb));
4297 goto failed_mount;
4298 }
4299 sbi->s_groups_count = blocks_count;
4300 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4301 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4302 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4303 le32_to_cpu(es->s_inodes_count)) {
4304 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4305 le32_to_cpu(es->s_inodes_count),
4306 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4307 ret = -EINVAL;
4308 goto failed_mount;
4309 }
4310 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4311 EXT4_DESC_PER_BLOCK(sb);
4312 if (ext4_has_feature_meta_bg(sb)) {
4313 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4314 ext4_msg(sb, KERN_WARNING,
4315 "first meta block group too large: %u "
4316 "(group descriptor block count %u)",
4317 le32_to_cpu(es->s_first_meta_bg), db_count);
4318 goto failed_mount;
4319 }
4320 }
4321 rcu_assign_pointer(sbi->s_group_desc,
4322 kvmalloc_array(db_count,
4323 sizeof(struct buffer_head *),
4324 GFP_KERNEL));
4325 if (sbi->s_group_desc == NULL) {
4326 ext4_msg(sb, KERN_ERR, "not enough memory");
4327 ret = -ENOMEM;
4328 goto failed_mount;
4329 }
4330
4331 bgl_lock_init(sbi->s_blockgroup_lock);
4332
4333 /* Pre-read the descriptors into the buffer cache */
4334 for (i = 0; i < db_count; i++) {
4335 block = descriptor_loc(sb, logical_sb_block, i);
4336 sb_breadahead_unmovable(sb, block);
4337 }
4338
4339 for (i = 0; i < db_count; i++) {
4340 struct buffer_head *bh;
4341
4342 block = descriptor_loc(sb, logical_sb_block, i);
4343 bh = sb_bread_unmovable(sb, block);
4344 if (!bh) {
4345 ext4_msg(sb, KERN_ERR,
4346 "can't read group descriptor %d", i);
4347 db_count = i;
4348 goto failed_mount2;
4349 }
4350 rcu_read_lock();
4351 rcu_dereference(sbi->s_group_desc)[i] = bh;
4352 rcu_read_unlock();
4353 }
4354 sbi->s_gdb_count = db_count;
4355 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4356 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4357 ret = -EFSCORRUPTED;
4358 goto failed_mount2;
4359 }
4360
4361 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4362
4363 /* Register extent status tree shrinker */
4364 if (ext4_es_register_shrinker(sbi))
4365 goto failed_mount3;
4366
4367 sbi->s_stripe = ext4_get_stripe_size(sbi);
4368 sbi->s_extent_max_zeroout_kb = 32;
4369
4370 /*
4371 * set up enough so that it can read an inode
4372 */
4373 sb->s_op = &ext4_sops;
4374 sb->s_export_op = &ext4_export_ops;
4375 sb->s_xattr = ext4_xattr_handlers;
4376#ifdef CONFIG_FS_ENCRYPTION
4377 sb->s_cop = &ext4_cryptops;
4378#endif
4379#ifdef CONFIG_FS_VERITY
4380 sb->s_vop = &ext4_verityops;
4381#endif
4382#ifdef CONFIG_QUOTA
4383 sb->dq_op = &ext4_quota_operations;
4384 if (ext4_has_feature_quota(sb))
4385 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4386 else
4387 sb->s_qcop = &ext4_qctl_operations;
4388 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4389#endif
4390 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4391
4392 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4393 mutex_init(&sbi->s_orphan_lock);
4394
4395 sb->s_root = NULL;
4396
4397 needs_recovery = (es->s_last_orphan != 0 ||
4398 ext4_has_feature_journal_needs_recovery(sb));
4399
4400 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4401 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4402 goto failed_mount3a;
4403
4404 /*
4405 * The first inode we look at is the journal inode. Don't try
4406 * root first: it may be modified in the journal!
4407 */
4408 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4409 err = ext4_load_journal(sb, es, journal_devnum);
4410 if (err)
4411 goto failed_mount3a;
4412 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4413 ext4_has_feature_journal_needs_recovery(sb)) {
4414 ext4_msg(sb, KERN_ERR, "required journal recovery "
4415 "suppressed and not mounted read-only");
4416 goto failed_mount_wq;
4417 } else {
4418 /* Nojournal mode, all journal mount options are illegal */
4419 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4420 ext4_msg(sb, KERN_ERR, "can't mount with "
4421 "journal_checksum, fs mounted w/o journal");
4422 goto failed_mount_wq;
4423 }
4424 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4425 ext4_msg(sb, KERN_ERR, "can't mount with "
4426 "journal_async_commit, fs mounted w/o journal");
4427 goto failed_mount_wq;
4428 }
4429 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4430 ext4_msg(sb, KERN_ERR, "can't mount with "
4431 "commit=%lu, fs mounted w/o journal",
4432 sbi->s_commit_interval / HZ);
4433 goto failed_mount_wq;
4434 }
4435 if (EXT4_MOUNT_DATA_FLAGS &
4436 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4437 ext4_msg(sb, KERN_ERR, "can't mount with "
4438 "data=, fs mounted w/o journal");
4439 goto failed_mount_wq;
4440 }
4441 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4442 clear_opt(sb, JOURNAL_CHECKSUM);
4443 clear_opt(sb, DATA_FLAGS);
4444 sbi->s_journal = NULL;
4445 needs_recovery = 0;
4446 goto no_journal;
4447 }
4448
4449 if (ext4_has_feature_64bit(sb) &&
4450 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4451 JBD2_FEATURE_INCOMPAT_64BIT)) {
4452 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4453 goto failed_mount_wq;
4454 }
4455
4456 if (!set_journal_csum_feature_set(sb)) {
4457 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4458 "feature set");
4459 goto failed_mount_wq;
4460 }
4461
4462 /* We have now updated the journal if required, so we can
4463 * validate the data journaling mode. */
4464 switch (test_opt(sb, DATA_FLAGS)) {
4465 case 0:
4466 /* No mode set, assume a default based on the journal
4467 * capabilities: ORDERED_DATA if the journal can
4468 * cope, else JOURNAL_DATA
4469 */
4470 if (jbd2_journal_check_available_features
4471 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4472 set_opt(sb, ORDERED_DATA);
4473 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4474 } else {
4475 set_opt(sb, JOURNAL_DATA);
4476 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4477 }
4478 break;
4479
4480 case EXT4_MOUNT_ORDERED_DATA:
4481 case EXT4_MOUNT_WRITEBACK_DATA:
4482 if (!jbd2_journal_check_available_features
4483 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4484 ext4_msg(sb, KERN_ERR, "Journal does not support "
4485 "requested data journaling mode");
4486 goto failed_mount_wq;
4487 }
4488 default:
4489 break;
4490 }
4491
4492 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4493 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4494 ext4_msg(sb, KERN_ERR, "can't mount with "
4495 "journal_async_commit in data=ordered mode");
4496 goto failed_mount_wq;
4497 }
4498
4499 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4500
4501 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4502
4503no_journal:
4504 if (!test_opt(sb, NO_MBCACHE)) {
4505 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4506 if (!sbi->s_ea_block_cache) {
4507 ext4_msg(sb, KERN_ERR,
4508 "Failed to create ea_block_cache");
4509 goto failed_mount_wq;
4510 }
4511
4512 if (ext4_has_feature_ea_inode(sb)) {
4513 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4514 if (!sbi->s_ea_inode_cache) {
4515 ext4_msg(sb, KERN_ERR,
4516 "Failed to create ea_inode_cache");
4517 goto failed_mount_wq;
4518 }
4519 }
4520 }
4521
4522 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4523 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4524 goto failed_mount_wq;
4525 }
4526
4527 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4528 !ext4_has_feature_encrypt(sb)) {
4529 ext4_set_feature_encrypt(sb);
4530 ext4_commit_super(sb, 1);
4531 }
4532
4533 /*
4534 * Get the # of file system overhead blocks from the
4535 * superblock if present.
4536 */
4537 if (es->s_overhead_clusters)
4538 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4539 else {
4540 err = ext4_calculate_overhead(sb);
4541 if (err)
4542 goto failed_mount_wq;
4543 }
4544
4545 /*
4546 * The maximum number of concurrent works can be high and
4547 * concurrency isn't really necessary. Limit it to 1.
4548 */
4549 EXT4_SB(sb)->rsv_conversion_wq =
4550 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4551 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4552 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4553 ret = -ENOMEM;
4554 goto failed_mount4;
4555 }
4556
4557 /*
4558 * The jbd2_journal_load will have done any necessary log recovery,
4559 * so we can safely mount the rest of the filesystem now.
4560 */
4561
4562 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4563 if (IS_ERR(root)) {
4564 ext4_msg(sb, KERN_ERR, "get root inode failed");
4565 ret = PTR_ERR(root);
4566 root = NULL;
4567 goto failed_mount4;
4568 }
4569 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4570 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4571 iput(root);
4572 goto failed_mount4;
4573 }
4574
4575#ifdef CONFIG_UNICODE
4576 if (sbi->s_encoding)
4577 sb->s_d_op = &ext4_dentry_ops;
4578#endif
4579
4580 sb->s_root = d_make_root(root);
4581 if (!sb->s_root) {
4582 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4583 ret = -ENOMEM;
4584 goto failed_mount4;
4585 }
4586
4587 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4588 if (ret == -EROFS) {
4589 sb->s_flags |= SB_RDONLY;
4590 ret = 0;
4591 } else if (ret)
4592 goto failed_mount4a;
4593
4594 ext4_set_resv_clusters(sb);
4595
4596 err = ext4_setup_system_zone(sb);
4597 if (err) {
4598 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4599 "zone (%d)", err);
4600 goto failed_mount4a;
4601 }
4602
4603 ext4_ext_init(sb);
4604 err = ext4_mb_init(sb);
4605 if (err) {
4606 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4607 err);
4608 goto failed_mount5;
4609 }
4610
4611 block = ext4_count_free_clusters(sb);
4612 ext4_free_blocks_count_set(sbi->s_es,
4613 EXT4_C2B(sbi, block));
4614 ext4_superblock_csum_set(sb);
4615 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4616 GFP_KERNEL);
4617 if (!err) {
4618 unsigned long freei = ext4_count_free_inodes(sb);
4619 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4620 ext4_superblock_csum_set(sb);
4621 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4622 GFP_KERNEL);
4623 }
4624 if (!err)
4625 err = percpu_counter_init(&sbi->s_dirs_counter,
4626 ext4_count_dirs(sb), GFP_KERNEL);
4627 if (!err)
4628 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4629 GFP_KERNEL);
4630 if (!err)
4631 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4632
4633 if (err) {
4634 ext4_msg(sb, KERN_ERR, "insufficient memory");
4635 goto failed_mount6;
4636 }
4637
4638 if (ext4_has_feature_flex_bg(sb))
4639 if (!ext4_fill_flex_info(sb)) {
4640 ext4_msg(sb, KERN_ERR,
4641 "unable to initialize "
4642 "flex_bg meta info!");
4643 goto failed_mount6;
4644 }
4645
4646 err = ext4_register_li_request(sb, first_not_zeroed);
4647 if (err)
4648 goto failed_mount6;
4649
4650 err = ext4_register_sysfs(sb);
4651 if (err)
4652 goto failed_mount7;
4653
4654#ifdef CONFIG_QUOTA
4655 /* Enable quota usage during mount. */
4656 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4657 err = ext4_enable_quotas(sb);
4658 if (err)
4659 goto failed_mount8;
4660 }
4661#endif /* CONFIG_QUOTA */
4662
4663 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4664 ext4_orphan_cleanup(sb, es);
4665 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4666 if (needs_recovery) {
4667 ext4_msg(sb, KERN_INFO, "recovery complete");
4668 ext4_mark_recovery_complete(sb, es);
4669 }
4670 if (EXT4_SB(sb)->s_journal) {
4671 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4672 descr = " journalled data mode";
4673 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4674 descr = " ordered data mode";
4675 else
4676 descr = " writeback data mode";
4677 } else
4678 descr = "out journal";
4679
4680 if (test_opt(sb, DISCARD)) {
4681 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4682 if (!blk_queue_discard(q))
4683 ext4_msg(sb, KERN_WARNING,
4684 "mounting with \"discard\" option, but "
4685 "the device does not support discard");
4686 }
4687
4688 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4689 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4690 "Opts: %.*s%s%s", descr,
4691 (int) sizeof(sbi->s_es->s_mount_opts),
4692 sbi->s_es->s_mount_opts,
4693 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4694
4695 if (es->s_error_count)
4696 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4697
4698 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4699 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4700 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4701 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4702
4703 kfree(orig_data);
4704 return 0;
4705
4706cantfind_ext4:
4707 if (!silent)
4708 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4709 goto failed_mount;
4710
4711#ifdef CONFIG_QUOTA
4712failed_mount8:
4713 ext4_unregister_sysfs(sb);
4714#endif
4715failed_mount7:
4716 ext4_unregister_li_request(sb);
4717failed_mount6:
4718 ext4_mb_release(sb);
4719 rcu_read_lock();
4720 flex_groups = rcu_dereference(sbi->s_flex_groups);
4721 if (flex_groups) {
4722 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4723 kvfree(flex_groups[i]);
4724 kvfree(flex_groups);
4725 }
4726 rcu_read_unlock();
4727 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4728 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4729 percpu_counter_destroy(&sbi->s_dirs_counter);
4730 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4731 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4732failed_mount5:
4733 ext4_ext_release(sb);
4734 ext4_release_system_zone(sb);
4735failed_mount4a:
4736 dput(sb->s_root);
4737 sb->s_root = NULL;
4738failed_mount4:
4739 ext4_msg(sb, KERN_ERR, "mount failed");
4740 if (EXT4_SB(sb)->rsv_conversion_wq)
4741 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4742failed_mount_wq:
4743 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4744 sbi->s_ea_inode_cache = NULL;
4745
4746 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4747 sbi->s_ea_block_cache = NULL;
4748
4749 if (sbi->s_journal) {
4750 jbd2_journal_destroy(sbi->s_journal);
4751 sbi->s_journal = NULL;
4752 }
4753failed_mount3a:
4754 ext4_es_unregister_shrinker(sbi);
4755failed_mount3:
4756 del_timer_sync(&sbi->s_err_report);
4757 if (sbi->s_mmp_tsk)
4758 kthread_stop(sbi->s_mmp_tsk);
4759failed_mount2:
4760 rcu_read_lock();
4761 group_desc = rcu_dereference(sbi->s_group_desc);
4762 for (i = 0; i < db_count; i++)
4763 brelse(group_desc[i]);
4764 kvfree(group_desc);
4765 rcu_read_unlock();
4766failed_mount:
4767 if (sbi->s_chksum_driver)
4768 crypto_free_shash(sbi->s_chksum_driver);
4769
4770#ifdef CONFIG_UNICODE
4771 utf8_unload(sbi->s_encoding);
4772#endif
4773
4774#ifdef CONFIG_QUOTA
4775 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4776 kfree(get_qf_name(sb, sbi, i));
4777#endif
4242 if (clustersize < blocksize) {
4243 ext4_msg(sb, KERN_ERR,
4244 "cluster size (%d) smaller than "
4245 "block size (%d)", clustersize, blocksize);
4246 goto failed_mount;
4247 }
4248 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4249 le32_to_cpu(es->s_log_block_size);
4250 sbi->s_clusters_per_group =
4251 le32_to_cpu(es->s_clusters_per_group);
4252 if (sbi->s_clusters_per_group > blocksize * 8) {
4253 ext4_msg(sb, KERN_ERR,
4254 "#clusters per group too big: %lu",
4255 sbi->s_clusters_per_group);
4256 goto failed_mount;
4257 }
4258 if (sbi->s_blocks_per_group !=
4259 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4260 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4261 "clusters per group (%lu) inconsistent",
4262 sbi->s_blocks_per_group,
4263 sbi->s_clusters_per_group);
4264 goto failed_mount;
4265 }
4266 } else {
4267 if (clustersize != blocksize) {
4268 ext4_msg(sb, KERN_ERR,
4269 "fragment/cluster size (%d) != "
4270 "block size (%d)", clustersize, blocksize);
4271 goto failed_mount;
4272 }
4273 if (sbi->s_blocks_per_group > blocksize * 8) {
4274 ext4_msg(sb, KERN_ERR,
4275 "#blocks per group too big: %lu",
4276 sbi->s_blocks_per_group);
4277 goto failed_mount;
4278 }
4279 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4280 sbi->s_cluster_bits = 0;
4281 }
4282 sbi->s_cluster_ratio = clustersize / blocksize;
4283
4284 /* Do we have standard group size of clustersize * 8 blocks ? */
4285 if (sbi->s_blocks_per_group == clustersize << 3)
4286 set_opt2(sb, STD_GROUP_SIZE);
4287
4288 /*
4289 * Test whether we have more sectors than will fit in sector_t,
4290 * and whether the max offset is addressable by the page cache.
4291 */
4292 err = generic_check_addressable(sb->s_blocksize_bits,
4293 ext4_blocks_count(es));
4294 if (err) {
4295 ext4_msg(sb, KERN_ERR, "filesystem"
4296 " too large to mount safely on this system");
4297 goto failed_mount;
4298 }
4299
4300 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4301 goto cantfind_ext4;
4302
4303 /* check blocks count against device size */
4304 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4305 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4306 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4307 "exceeds size of device (%llu blocks)",
4308 ext4_blocks_count(es), blocks_count);
4309 goto failed_mount;
4310 }
4311
4312 /*
4313 * It makes no sense for the first data block to be beyond the end
4314 * of the filesystem.
4315 */
4316 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4317 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4318 "block %u is beyond end of filesystem (%llu)",
4319 le32_to_cpu(es->s_first_data_block),
4320 ext4_blocks_count(es));
4321 goto failed_mount;
4322 }
4323 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4324 (sbi->s_cluster_ratio == 1)) {
4325 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4326 "block is 0 with a 1k block and cluster size");
4327 goto failed_mount;
4328 }
4329
4330 blocks_count = (ext4_blocks_count(es) -
4331 le32_to_cpu(es->s_first_data_block) +
4332 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4333 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4334 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4335 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4336 "(block count %llu, first data block %u, "
4337 "blocks per group %lu)", blocks_count,
4338 ext4_blocks_count(es),
4339 le32_to_cpu(es->s_first_data_block),
4340 EXT4_BLOCKS_PER_GROUP(sb));
4341 goto failed_mount;
4342 }
4343 sbi->s_groups_count = blocks_count;
4344 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4345 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4346 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4347 le32_to_cpu(es->s_inodes_count)) {
4348 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4349 le32_to_cpu(es->s_inodes_count),
4350 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4351 ret = -EINVAL;
4352 goto failed_mount;
4353 }
4354 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4355 EXT4_DESC_PER_BLOCK(sb);
4356 if (ext4_has_feature_meta_bg(sb)) {
4357 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4358 ext4_msg(sb, KERN_WARNING,
4359 "first meta block group too large: %u "
4360 "(group descriptor block count %u)",
4361 le32_to_cpu(es->s_first_meta_bg), db_count);
4362 goto failed_mount;
4363 }
4364 }
4365 rcu_assign_pointer(sbi->s_group_desc,
4366 kvmalloc_array(db_count,
4367 sizeof(struct buffer_head *),
4368 GFP_KERNEL));
4369 if (sbi->s_group_desc == NULL) {
4370 ext4_msg(sb, KERN_ERR, "not enough memory");
4371 ret = -ENOMEM;
4372 goto failed_mount;
4373 }
4374
4375 bgl_lock_init(sbi->s_blockgroup_lock);
4376
4377 /* Pre-read the descriptors into the buffer cache */
4378 for (i = 0; i < db_count; i++) {
4379 block = descriptor_loc(sb, logical_sb_block, i);
4380 sb_breadahead_unmovable(sb, block);
4381 }
4382
4383 for (i = 0; i < db_count; i++) {
4384 struct buffer_head *bh;
4385
4386 block = descriptor_loc(sb, logical_sb_block, i);
4387 bh = sb_bread_unmovable(sb, block);
4388 if (!bh) {
4389 ext4_msg(sb, KERN_ERR,
4390 "can't read group descriptor %d", i);
4391 db_count = i;
4392 goto failed_mount2;
4393 }
4394 rcu_read_lock();
4395 rcu_dereference(sbi->s_group_desc)[i] = bh;
4396 rcu_read_unlock();
4397 }
4398 sbi->s_gdb_count = db_count;
4399 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4400 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4401 ret = -EFSCORRUPTED;
4402 goto failed_mount2;
4403 }
4404
4405 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4406
4407 /* Register extent status tree shrinker */
4408 if (ext4_es_register_shrinker(sbi))
4409 goto failed_mount3;
4410
4411 sbi->s_stripe = ext4_get_stripe_size(sbi);
4412 sbi->s_extent_max_zeroout_kb = 32;
4413
4414 /*
4415 * set up enough so that it can read an inode
4416 */
4417 sb->s_op = &ext4_sops;
4418 sb->s_export_op = &ext4_export_ops;
4419 sb->s_xattr = ext4_xattr_handlers;
4420#ifdef CONFIG_FS_ENCRYPTION
4421 sb->s_cop = &ext4_cryptops;
4422#endif
4423#ifdef CONFIG_FS_VERITY
4424 sb->s_vop = &ext4_verityops;
4425#endif
4426#ifdef CONFIG_QUOTA
4427 sb->dq_op = &ext4_quota_operations;
4428 if (ext4_has_feature_quota(sb))
4429 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4430 else
4431 sb->s_qcop = &ext4_qctl_operations;
4432 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4433#endif
4434 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4435
4436 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4437 mutex_init(&sbi->s_orphan_lock);
4438
4439 sb->s_root = NULL;
4440
4441 needs_recovery = (es->s_last_orphan != 0 ||
4442 ext4_has_feature_journal_needs_recovery(sb));
4443
4444 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4445 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4446 goto failed_mount3a;
4447
4448 /*
4449 * The first inode we look at is the journal inode. Don't try
4450 * root first: it may be modified in the journal!
4451 */
4452 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4453 err = ext4_load_journal(sb, es, journal_devnum);
4454 if (err)
4455 goto failed_mount3a;
4456 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4457 ext4_has_feature_journal_needs_recovery(sb)) {
4458 ext4_msg(sb, KERN_ERR, "required journal recovery "
4459 "suppressed and not mounted read-only");
4460 goto failed_mount_wq;
4461 } else {
4462 /* Nojournal mode, all journal mount options are illegal */
4463 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4464 ext4_msg(sb, KERN_ERR, "can't mount with "
4465 "journal_checksum, fs mounted w/o journal");
4466 goto failed_mount_wq;
4467 }
4468 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4469 ext4_msg(sb, KERN_ERR, "can't mount with "
4470 "journal_async_commit, fs mounted w/o journal");
4471 goto failed_mount_wq;
4472 }
4473 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4474 ext4_msg(sb, KERN_ERR, "can't mount with "
4475 "commit=%lu, fs mounted w/o journal",
4476 sbi->s_commit_interval / HZ);
4477 goto failed_mount_wq;
4478 }
4479 if (EXT4_MOUNT_DATA_FLAGS &
4480 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4481 ext4_msg(sb, KERN_ERR, "can't mount with "
4482 "data=, fs mounted w/o journal");
4483 goto failed_mount_wq;
4484 }
4485 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4486 clear_opt(sb, JOURNAL_CHECKSUM);
4487 clear_opt(sb, DATA_FLAGS);
4488 sbi->s_journal = NULL;
4489 needs_recovery = 0;
4490 goto no_journal;
4491 }
4492
4493 if (ext4_has_feature_64bit(sb) &&
4494 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4495 JBD2_FEATURE_INCOMPAT_64BIT)) {
4496 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4497 goto failed_mount_wq;
4498 }
4499
4500 if (!set_journal_csum_feature_set(sb)) {
4501 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4502 "feature set");
4503 goto failed_mount_wq;
4504 }
4505
4506 /* We have now updated the journal if required, so we can
4507 * validate the data journaling mode. */
4508 switch (test_opt(sb, DATA_FLAGS)) {
4509 case 0:
4510 /* No mode set, assume a default based on the journal
4511 * capabilities: ORDERED_DATA if the journal can
4512 * cope, else JOURNAL_DATA
4513 */
4514 if (jbd2_journal_check_available_features
4515 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4516 set_opt(sb, ORDERED_DATA);
4517 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4518 } else {
4519 set_opt(sb, JOURNAL_DATA);
4520 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4521 }
4522 break;
4523
4524 case EXT4_MOUNT_ORDERED_DATA:
4525 case EXT4_MOUNT_WRITEBACK_DATA:
4526 if (!jbd2_journal_check_available_features
4527 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4528 ext4_msg(sb, KERN_ERR, "Journal does not support "
4529 "requested data journaling mode");
4530 goto failed_mount_wq;
4531 }
4532 default:
4533 break;
4534 }
4535
4536 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4537 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4538 ext4_msg(sb, KERN_ERR, "can't mount with "
4539 "journal_async_commit in data=ordered mode");
4540 goto failed_mount_wq;
4541 }
4542
4543 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4544
4545 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4546
4547no_journal:
4548 if (!test_opt(sb, NO_MBCACHE)) {
4549 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4550 if (!sbi->s_ea_block_cache) {
4551 ext4_msg(sb, KERN_ERR,
4552 "Failed to create ea_block_cache");
4553 goto failed_mount_wq;
4554 }
4555
4556 if (ext4_has_feature_ea_inode(sb)) {
4557 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4558 if (!sbi->s_ea_inode_cache) {
4559 ext4_msg(sb, KERN_ERR,
4560 "Failed to create ea_inode_cache");
4561 goto failed_mount_wq;
4562 }
4563 }
4564 }
4565
4566 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4567 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4568 goto failed_mount_wq;
4569 }
4570
4571 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4572 !ext4_has_feature_encrypt(sb)) {
4573 ext4_set_feature_encrypt(sb);
4574 ext4_commit_super(sb, 1);
4575 }
4576
4577 /*
4578 * Get the # of file system overhead blocks from the
4579 * superblock if present.
4580 */
4581 if (es->s_overhead_clusters)
4582 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4583 else {
4584 err = ext4_calculate_overhead(sb);
4585 if (err)
4586 goto failed_mount_wq;
4587 }
4588
4589 /*
4590 * The maximum number of concurrent works can be high and
4591 * concurrency isn't really necessary. Limit it to 1.
4592 */
4593 EXT4_SB(sb)->rsv_conversion_wq =
4594 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4595 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4596 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4597 ret = -ENOMEM;
4598 goto failed_mount4;
4599 }
4600
4601 /*
4602 * The jbd2_journal_load will have done any necessary log recovery,
4603 * so we can safely mount the rest of the filesystem now.
4604 */
4605
4606 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4607 if (IS_ERR(root)) {
4608 ext4_msg(sb, KERN_ERR, "get root inode failed");
4609 ret = PTR_ERR(root);
4610 root = NULL;
4611 goto failed_mount4;
4612 }
4613 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4614 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4615 iput(root);
4616 goto failed_mount4;
4617 }
4618
4619#ifdef CONFIG_UNICODE
4620 if (sbi->s_encoding)
4621 sb->s_d_op = &ext4_dentry_ops;
4622#endif
4623
4624 sb->s_root = d_make_root(root);
4625 if (!sb->s_root) {
4626 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4627 ret = -ENOMEM;
4628 goto failed_mount4;
4629 }
4630
4631 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4632 if (ret == -EROFS) {
4633 sb->s_flags |= SB_RDONLY;
4634 ret = 0;
4635 } else if (ret)
4636 goto failed_mount4a;
4637
4638 ext4_set_resv_clusters(sb);
4639
4640 err = ext4_setup_system_zone(sb);
4641 if (err) {
4642 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4643 "zone (%d)", err);
4644 goto failed_mount4a;
4645 }
4646
4647 ext4_ext_init(sb);
4648 err = ext4_mb_init(sb);
4649 if (err) {
4650 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4651 err);
4652 goto failed_mount5;
4653 }
4654
4655 block = ext4_count_free_clusters(sb);
4656 ext4_free_blocks_count_set(sbi->s_es,
4657 EXT4_C2B(sbi, block));
4658 ext4_superblock_csum_set(sb);
4659 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4660 GFP_KERNEL);
4661 if (!err) {
4662 unsigned long freei = ext4_count_free_inodes(sb);
4663 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4664 ext4_superblock_csum_set(sb);
4665 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4666 GFP_KERNEL);
4667 }
4668 if (!err)
4669 err = percpu_counter_init(&sbi->s_dirs_counter,
4670 ext4_count_dirs(sb), GFP_KERNEL);
4671 if (!err)
4672 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4673 GFP_KERNEL);
4674 if (!err)
4675 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4676
4677 if (err) {
4678 ext4_msg(sb, KERN_ERR, "insufficient memory");
4679 goto failed_mount6;
4680 }
4681
4682 if (ext4_has_feature_flex_bg(sb))
4683 if (!ext4_fill_flex_info(sb)) {
4684 ext4_msg(sb, KERN_ERR,
4685 "unable to initialize "
4686 "flex_bg meta info!");
4687 goto failed_mount6;
4688 }
4689
4690 err = ext4_register_li_request(sb, first_not_zeroed);
4691 if (err)
4692 goto failed_mount6;
4693
4694 err = ext4_register_sysfs(sb);
4695 if (err)
4696 goto failed_mount7;
4697
4698#ifdef CONFIG_QUOTA
4699 /* Enable quota usage during mount. */
4700 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4701 err = ext4_enable_quotas(sb);
4702 if (err)
4703 goto failed_mount8;
4704 }
4705#endif /* CONFIG_QUOTA */
4706
4707 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4708 ext4_orphan_cleanup(sb, es);
4709 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4710 if (needs_recovery) {
4711 ext4_msg(sb, KERN_INFO, "recovery complete");
4712 ext4_mark_recovery_complete(sb, es);
4713 }
4714 if (EXT4_SB(sb)->s_journal) {
4715 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4716 descr = " journalled data mode";
4717 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4718 descr = " ordered data mode";
4719 else
4720 descr = " writeback data mode";
4721 } else
4722 descr = "out journal";
4723
4724 if (test_opt(sb, DISCARD)) {
4725 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4726 if (!blk_queue_discard(q))
4727 ext4_msg(sb, KERN_WARNING,
4728 "mounting with \"discard\" option, but "
4729 "the device does not support discard");
4730 }
4731
4732 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4733 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4734 "Opts: %.*s%s%s", descr,
4735 (int) sizeof(sbi->s_es->s_mount_opts),
4736 sbi->s_es->s_mount_opts,
4737 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4738
4739 if (es->s_error_count)
4740 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4741
4742 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4743 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4744 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4745 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4746
4747 kfree(orig_data);
4748 return 0;
4749
4750cantfind_ext4:
4751 if (!silent)
4752 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4753 goto failed_mount;
4754
4755#ifdef CONFIG_QUOTA
4756failed_mount8:
4757 ext4_unregister_sysfs(sb);
4758#endif
4759failed_mount7:
4760 ext4_unregister_li_request(sb);
4761failed_mount6:
4762 ext4_mb_release(sb);
4763 rcu_read_lock();
4764 flex_groups = rcu_dereference(sbi->s_flex_groups);
4765 if (flex_groups) {
4766 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4767 kvfree(flex_groups[i]);
4768 kvfree(flex_groups);
4769 }
4770 rcu_read_unlock();
4771 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4772 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4773 percpu_counter_destroy(&sbi->s_dirs_counter);
4774 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4775 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4776failed_mount5:
4777 ext4_ext_release(sb);
4778 ext4_release_system_zone(sb);
4779failed_mount4a:
4780 dput(sb->s_root);
4781 sb->s_root = NULL;
4782failed_mount4:
4783 ext4_msg(sb, KERN_ERR, "mount failed");
4784 if (EXT4_SB(sb)->rsv_conversion_wq)
4785 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4786failed_mount_wq:
4787 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4788 sbi->s_ea_inode_cache = NULL;
4789
4790 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4791 sbi->s_ea_block_cache = NULL;
4792
4793 if (sbi->s_journal) {
4794 jbd2_journal_destroy(sbi->s_journal);
4795 sbi->s_journal = NULL;
4796 }
4797failed_mount3a:
4798 ext4_es_unregister_shrinker(sbi);
4799failed_mount3:
4800 del_timer_sync(&sbi->s_err_report);
4801 if (sbi->s_mmp_tsk)
4802 kthread_stop(sbi->s_mmp_tsk);
4803failed_mount2:
4804 rcu_read_lock();
4805 group_desc = rcu_dereference(sbi->s_group_desc);
4806 for (i = 0; i < db_count; i++)
4807 brelse(group_desc[i]);
4808 kvfree(group_desc);
4809 rcu_read_unlock();
4810failed_mount:
4811 if (sbi->s_chksum_driver)
4812 crypto_free_shash(sbi->s_chksum_driver);
4813
4814#ifdef CONFIG_UNICODE
4815 utf8_unload(sbi->s_encoding);
4816#endif
4817
4818#ifdef CONFIG_QUOTA
4819 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4820 kfree(get_qf_name(sb, sbi, i));
4821#endif
4822 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
4778 ext4_blkdev_remove(sbi);
4779 brelse(bh);
4780out_fail:
4781 sb->s_fs_info = NULL;
4782 kfree(sbi->s_blockgroup_lock);
4783out_free_base:
4784 kfree(sbi);
4785 kfree(orig_data);
4786 fs_put_dax(dax_dev);
4787 return err ? err : ret;
4788}
4789
4790/*
4791 * Setup any per-fs journal parameters now. We'll do this both on
4792 * initial mount, once the journal has been initialised but before we've
4793 * done any recovery; and again on any subsequent remount.
4794 */
4795static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4796{
4797 struct ext4_sb_info *sbi = EXT4_SB(sb);
4798
4799 journal->j_commit_interval = sbi->s_commit_interval;
4800 journal->j_min_batch_time = sbi->s_min_batch_time;
4801 journal->j_max_batch_time = sbi->s_max_batch_time;
4802
4803 write_lock(&journal->j_state_lock);
4804 if (test_opt(sb, BARRIER))
4805 journal->j_flags |= JBD2_BARRIER;
4806 else
4807 journal->j_flags &= ~JBD2_BARRIER;
4808 if (test_opt(sb, DATA_ERR_ABORT))
4809 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4810 else
4811 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4812 write_unlock(&journal->j_state_lock);
4813}
4814
4815static struct inode *ext4_get_journal_inode(struct super_block *sb,
4816 unsigned int journal_inum)
4817{
4818 struct inode *journal_inode;
4819
4820 /*
4821 * Test for the existence of a valid inode on disk. Bad things
4822 * happen if we iget() an unused inode, as the subsequent iput()
4823 * will try to delete it.
4824 */
4825 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4826 if (IS_ERR(journal_inode)) {
4827 ext4_msg(sb, KERN_ERR, "no journal found");
4828 return NULL;
4829 }
4830 if (!journal_inode->i_nlink) {
4831 make_bad_inode(journal_inode);
4832 iput(journal_inode);
4833 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4834 return NULL;
4835 }
4836
4837 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4838 journal_inode, journal_inode->i_size);
4839 if (!S_ISREG(journal_inode->i_mode)) {
4840 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4841 iput(journal_inode);
4842 return NULL;
4843 }
4844 return journal_inode;
4845}
4846
4847static journal_t *ext4_get_journal(struct super_block *sb,
4848 unsigned int journal_inum)
4849{
4850 struct inode *journal_inode;
4851 journal_t *journal;
4852
4853 BUG_ON(!ext4_has_feature_journal(sb));
4854
4855 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4856 if (!journal_inode)
4857 return NULL;
4858
4859 journal = jbd2_journal_init_inode(journal_inode);
4860 if (!journal) {
4861 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4862 iput(journal_inode);
4863 return NULL;
4864 }
4865 journal->j_private = sb;
4866 ext4_init_journal_params(sb, journal);
4867 return journal;
4868}
4869
4870static journal_t *ext4_get_dev_journal(struct super_block *sb,
4871 dev_t j_dev)
4872{
4873 struct buffer_head *bh;
4874 journal_t *journal;
4875 ext4_fsblk_t start;
4876 ext4_fsblk_t len;
4877 int hblock, blocksize;
4878 ext4_fsblk_t sb_block;
4879 unsigned long offset;
4880 struct ext4_super_block *es;
4881 struct block_device *bdev;
4882
4883 BUG_ON(!ext4_has_feature_journal(sb));
4884
4885 bdev = ext4_blkdev_get(j_dev, sb);
4886 if (bdev == NULL)
4887 return NULL;
4888
4889 blocksize = sb->s_blocksize;
4890 hblock = bdev_logical_block_size(bdev);
4891 if (blocksize < hblock) {
4892 ext4_msg(sb, KERN_ERR,
4893 "blocksize too small for journal device");
4894 goto out_bdev;
4895 }
4896
4897 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4898 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4899 set_blocksize(bdev, blocksize);
4900 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4901 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4902 "external journal");
4903 goto out_bdev;
4904 }
4905
4906 es = (struct ext4_super_block *) (bh->b_data + offset);
4907 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4908 !(le32_to_cpu(es->s_feature_incompat) &
4909 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4910 ext4_msg(sb, KERN_ERR, "external journal has "
4911 "bad superblock");
4912 brelse(bh);
4913 goto out_bdev;
4914 }
4915
4916 if ((le32_to_cpu(es->s_feature_ro_compat) &
4917 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4918 es->s_checksum != ext4_superblock_csum(sb, es)) {
4919 ext4_msg(sb, KERN_ERR, "external journal has "
4920 "corrupt superblock");
4921 brelse(bh);
4922 goto out_bdev;
4923 }
4924
4925 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4926 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4927 brelse(bh);
4928 goto out_bdev;
4929 }
4930
4931 len = ext4_blocks_count(es);
4932 start = sb_block + 1;
4933 brelse(bh); /* we're done with the superblock */
4934
4935 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4936 start, len, blocksize);
4937 if (!journal) {
4938 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4939 goto out_bdev;
4940 }
4941 journal->j_private = sb;
4942 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4943 wait_on_buffer(journal->j_sb_buffer);
4944 if (!buffer_uptodate(journal->j_sb_buffer)) {
4945 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4946 goto out_journal;
4947 }
4948 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4949 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4950 "user (unsupported) - %d",
4951 be32_to_cpu(journal->j_superblock->s_nr_users));
4952 goto out_journal;
4953 }
4954 EXT4_SB(sb)->journal_bdev = bdev;
4955 ext4_init_journal_params(sb, journal);
4956 return journal;
4957
4958out_journal:
4959 jbd2_journal_destroy(journal);
4960out_bdev:
4961 ext4_blkdev_put(bdev);
4962 return NULL;
4963}
4964
4965static int ext4_load_journal(struct super_block *sb,
4966 struct ext4_super_block *es,
4967 unsigned long journal_devnum)
4968{
4969 journal_t *journal;
4970 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4971 dev_t journal_dev;
4972 int err = 0;
4973 int really_read_only;
4974
4975 BUG_ON(!ext4_has_feature_journal(sb));
4976
4977 if (journal_devnum &&
4978 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4979 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4980 "numbers have changed");
4981 journal_dev = new_decode_dev(journal_devnum);
4982 } else
4983 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4984
4985 really_read_only = bdev_read_only(sb->s_bdev);
4986
4987 /*
4988 * Are we loading a blank journal or performing recovery after a
4989 * crash? For recovery, we need to check in advance whether we
4990 * can get read-write access to the device.
4991 */
4992 if (ext4_has_feature_journal_needs_recovery(sb)) {
4993 if (sb_rdonly(sb)) {
4994 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4995 "required on readonly filesystem");
4996 if (really_read_only) {
4997 ext4_msg(sb, KERN_ERR, "write access "
4998 "unavailable, cannot proceed "
4999 "(try mounting with noload)");
5000 return -EROFS;
5001 }
5002 ext4_msg(sb, KERN_INFO, "write access will "
5003 "be enabled during recovery");
5004 }
5005 }
5006
5007 if (journal_inum && journal_dev) {
5008 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
5009 "and inode journals!");
5010 return -EINVAL;
5011 }
5012
5013 if (journal_inum) {
5014 if (!(journal = ext4_get_journal(sb, journal_inum)))
5015 return -EINVAL;
5016 } else {
5017 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
5018 return -EINVAL;
5019 }
5020
5021 if (!(journal->j_flags & JBD2_BARRIER))
5022 ext4_msg(sb, KERN_INFO, "barriers disabled");
5023
5024 if (!ext4_has_feature_journal_needs_recovery(sb))
5025 err = jbd2_journal_wipe(journal, !really_read_only);
5026 if (!err) {
5027 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5028 if (save)
5029 memcpy(save, ((char *) es) +
5030 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5031 err = jbd2_journal_load(journal);
5032 if (save)
5033 memcpy(((char *) es) + EXT4_S_ERR_START,
5034 save, EXT4_S_ERR_LEN);
5035 kfree(save);
5036 }
5037
5038 if (err) {
5039 ext4_msg(sb, KERN_ERR, "error loading journal");
5040 jbd2_journal_destroy(journal);
5041 return err;
5042 }
5043
5044 EXT4_SB(sb)->s_journal = journal;
5045 ext4_clear_journal_err(sb, es);
5046
5047 if (!really_read_only && journal_devnum &&
5048 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5049 es->s_journal_dev = cpu_to_le32(journal_devnum);
5050
5051 /* Make sure we flush the recovery flag to disk. */
5052 ext4_commit_super(sb, 1);
5053 }
5054
5055 return 0;
5056}
5057
5058static int ext4_commit_super(struct super_block *sb, int sync)
5059{
5060 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5061 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5062 int error = 0;
5063
5064 if (!sbh || block_device_ejected(sb))
5065 return error;
5066
5067 /*
5068 * The superblock bh should be mapped, but it might not be if the
5069 * device was hot-removed. Not much we can do but fail the I/O.
5070 */
5071 if (!buffer_mapped(sbh))
5072 return error;
5073
5074 /*
5075 * If the file system is mounted read-only, don't update the
5076 * superblock write time. This avoids updating the superblock
5077 * write time when we are mounting the root file system
5078 * read/only but we need to replay the journal; at that point,
5079 * for people who are east of GMT and who make their clock
5080 * tick in localtime for Windows bug-for-bug compatibility,
5081 * the clock is set in the future, and this will cause e2fsck
5082 * to complain and force a full file system check.
5083 */
5084 if (!(sb->s_flags & SB_RDONLY))
5085 ext4_update_tstamp(es, s_wtime);
5086 if (sb->s_bdev->bd_part)
5087 es->s_kbytes_written =
5088 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5089 ((part_stat_read(sb->s_bdev->bd_part,
5090 sectors[STAT_WRITE]) -
5091 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5092 else
5093 es->s_kbytes_written =
5094 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5095 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5096 ext4_free_blocks_count_set(es,
5097 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5098 &EXT4_SB(sb)->s_freeclusters_counter)));
5099 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5100 es->s_free_inodes_count =
5101 cpu_to_le32(percpu_counter_sum_positive(
5102 &EXT4_SB(sb)->s_freeinodes_counter));
5103 BUFFER_TRACE(sbh, "marking dirty");
5104 ext4_superblock_csum_set(sb);
5105 if (sync)
5106 lock_buffer(sbh);
5107 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5108 /*
5109 * Oh, dear. A previous attempt to write the
5110 * superblock failed. This could happen because the
5111 * USB device was yanked out. Or it could happen to
5112 * be a transient write error and maybe the block will
5113 * be remapped. Nothing we can do but to retry the
5114 * write and hope for the best.
5115 */
5116 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5117 "superblock detected");
5118 clear_buffer_write_io_error(sbh);
5119 set_buffer_uptodate(sbh);
5120 }
5121 mark_buffer_dirty(sbh);
5122 if (sync) {
5123 unlock_buffer(sbh);
5124 error = __sync_dirty_buffer(sbh,
5125 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5126 if (buffer_write_io_error(sbh)) {
5127 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5128 "superblock");
5129 clear_buffer_write_io_error(sbh);
5130 set_buffer_uptodate(sbh);
5131 }
5132 }
5133 return error;
5134}
5135
5136/*
5137 * Have we just finished recovery? If so, and if we are mounting (or
5138 * remounting) the filesystem readonly, then we will end up with a
5139 * consistent fs on disk. Record that fact.
5140 */
5141static void ext4_mark_recovery_complete(struct super_block *sb,
5142 struct ext4_super_block *es)
5143{
5144 journal_t *journal = EXT4_SB(sb)->s_journal;
5145
5146 if (!ext4_has_feature_journal(sb)) {
5147 BUG_ON(journal != NULL);
5148 return;
5149 }
5150 jbd2_journal_lock_updates(journal);
5151 if (jbd2_journal_flush(journal) < 0)
5152 goto out;
5153
5154 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5155 ext4_clear_feature_journal_needs_recovery(sb);
5156 ext4_commit_super(sb, 1);
5157 }
5158
5159out:
5160 jbd2_journal_unlock_updates(journal);
5161}
5162
5163/*
5164 * If we are mounting (or read-write remounting) a filesystem whose journal
5165 * has recorded an error from a previous lifetime, move that error to the
5166 * main filesystem now.
5167 */
5168static void ext4_clear_journal_err(struct super_block *sb,
5169 struct ext4_super_block *es)
5170{
5171 journal_t *journal;
5172 int j_errno;
5173 const char *errstr;
5174
5175 BUG_ON(!ext4_has_feature_journal(sb));
5176
5177 journal = EXT4_SB(sb)->s_journal;
5178
5179 /*
5180 * Now check for any error status which may have been recorded in the
5181 * journal by a prior ext4_error() or ext4_abort()
5182 */
5183
5184 j_errno = jbd2_journal_errno(journal);
5185 if (j_errno) {
5186 char nbuf[16];
5187
5188 errstr = ext4_decode_error(sb, j_errno, nbuf);
5189 ext4_warning(sb, "Filesystem error recorded "
5190 "from previous mount: %s", errstr);
5191 ext4_warning(sb, "Marking fs in need of filesystem check.");
5192
5193 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5194 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5195 ext4_commit_super(sb, 1);
5196
5197 jbd2_journal_clear_err(journal);
5198 jbd2_journal_update_sb_errno(journal);
5199 }
5200}
5201
5202/*
5203 * Force the running and committing transactions to commit,
5204 * and wait on the commit.
5205 */
5206int ext4_force_commit(struct super_block *sb)
5207{
5208 journal_t *journal;
5209
5210 if (sb_rdonly(sb))
5211 return 0;
5212
5213 journal = EXT4_SB(sb)->s_journal;
5214 return ext4_journal_force_commit(journal);
5215}
5216
5217static int ext4_sync_fs(struct super_block *sb, int wait)
5218{
5219 int ret = 0;
5220 tid_t target;
5221 bool needs_barrier = false;
5222 struct ext4_sb_info *sbi = EXT4_SB(sb);
5223
5224 if (unlikely(ext4_forced_shutdown(sbi)))
5225 return 0;
5226
5227 trace_ext4_sync_fs(sb, wait);
5228 flush_workqueue(sbi->rsv_conversion_wq);
5229 /*
5230 * Writeback quota in non-journalled quota case - journalled quota has
5231 * no dirty dquots
5232 */
5233 dquot_writeback_dquots(sb, -1);
5234 /*
5235 * Data writeback is possible w/o journal transaction, so barrier must
5236 * being sent at the end of the function. But we can skip it if
5237 * transaction_commit will do it for us.
5238 */
5239 if (sbi->s_journal) {
5240 target = jbd2_get_latest_transaction(sbi->s_journal);
5241 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5242 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5243 needs_barrier = true;
5244
5245 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5246 if (wait)
5247 ret = jbd2_log_wait_commit(sbi->s_journal,
5248 target);
5249 }
5250 } else if (wait && test_opt(sb, BARRIER))
5251 needs_barrier = true;
5252 if (needs_barrier) {
5253 int err;
5254 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5255 if (!ret)
5256 ret = err;
5257 }
5258
5259 return ret;
5260}
5261
5262/*
5263 * LVM calls this function before a (read-only) snapshot is created. This
5264 * gives us a chance to flush the journal completely and mark the fs clean.
5265 *
5266 * Note that only this function cannot bring a filesystem to be in a clean
5267 * state independently. It relies on upper layer to stop all data & metadata
5268 * modifications.
5269 */
5270static int ext4_freeze(struct super_block *sb)
5271{
5272 int error = 0;
5273 journal_t *journal;
5274
5275 if (sb_rdonly(sb))
5276 return 0;
5277
5278 journal = EXT4_SB(sb)->s_journal;
5279
5280 if (journal) {
5281 /* Now we set up the journal barrier. */
5282 jbd2_journal_lock_updates(journal);
5283
5284 /*
5285 * Don't clear the needs_recovery flag if we failed to
5286 * flush the journal.
5287 */
5288 error = jbd2_journal_flush(journal);
5289 if (error < 0)
5290 goto out;
5291
5292 /* Journal blocked and flushed, clear needs_recovery flag. */
5293 ext4_clear_feature_journal_needs_recovery(sb);
5294 }
5295
5296 error = ext4_commit_super(sb, 1);
5297out:
5298 if (journal)
5299 /* we rely on upper layer to stop further updates */
5300 jbd2_journal_unlock_updates(journal);
5301 return error;
5302}
5303
5304/*
5305 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5306 * flag here, even though the filesystem is not technically dirty yet.
5307 */
5308static int ext4_unfreeze(struct super_block *sb)
5309{
5310 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5311 return 0;
5312
5313 if (EXT4_SB(sb)->s_journal) {
5314 /* Reset the needs_recovery flag before the fs is unlocked. */
5315 ext4_set_feature_journal_needs_recovery(sb);
5316 }
5317
5318 ext4_commit_super(sb, 1);
5319 return 0;
5320}
5321
5322/*
5323 * Structure to save mount options for ext4_remount's benefit
5324 */
5325struct ext4_mount_options {
5326 unsigned long s_mount_opt;
5327 unsigned long s_mount_opt2;
5328 kuid_t s_resuid;
5329 kgid_t s_resgid;
5330 unsigned long s_commit_interval;
5331 u32 s_min_batch_time, s_max_batch_time;
5332#ifdef CONFIG_QUOTA
5333 int s_jquota_fmt;
5334 char *s_qf_names[EXT4_MAXQUOTAS];
5335#endif
5336};
5337
5338static int ext4_remount(struct super_block *sb, int *flags, char *data)
5339{
5340 struct ext4_super_block *es;
5341 struct ext4_sb_info *sbi = EXT4_SB(sb);
5342 unsigned long old_sb_flags;
5343 struct ext4_mount_options old_opts;
5344 int enable_quota = 0;
5345 ext4_group_t g;
5346 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5347 int err = 0;
5348#ifdef CONFIG_QUOTA
5349 int i, j;
5350 char *to_free[EXT4_MAXQUOTAS];
5351#endif
5352 char *orig_data = kstrdup(data, GFP_KERNEL);
5353
5354 if (data && !orig_data)
5355 return -ENOMEM;
5356
5357 /* Store the original options */
5358 old_sb_flags = sb->s_flags;
5359 old_opts.s_mount_opt = sbi->s_mount_opt;
5360 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5361 old_opts.s_resuid = sbi->s_resuid;
5362 old_opts.s_resgid = sbi->s_resgid;
5363 old_opts.s_commit_interval = sbi->s_commit_interval;
5364 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5365 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5366#ifdef CONFIG_QUOTA
5367 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5368 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5369 if (sbi->s_qf_names[i]) {
5370 char *qf_name = get_qf_name(sb, sbi, i);
5371
5372 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5373 if (!old_opts.s_qf_names[i]) {
5374 for (j = 0; j < i; j++)
5375 kfree(old_opts.s_qf_names[j]);
5376 kfree(orig_data);
5377 return -ENOMEM;
5378 }
5379 } else
5380 old_opts.s_qf_names[i] = NULL;
5381#endif
5382 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5383 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5384
5385 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5386 err = -EINVAL;
5387 goto restore_opts;
5388 }
5389
5390 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5391 test_opt(sb, JOURNAL_CHECKSUM)) {
5392 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5393 "during remount not supported; ignoring");
5394 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5395 }
5396
5397 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5398 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5399 ext4_msg(sb, KERN_ERR, "can't mount with "
5400 "both data=journal and delalloc");
5401 err = -EINVAL;
5402 goto restore_opts;
5403 }
5404 if (test_opt(sb, DIOREAD_NOLOCK)) {
5405 ext4_msg(sb, KERN_ERR, "can't mount with "
5406 "both data=journal and dioread_nolock");
5407 err = -EINVAL;
5408 goto restore_opts;
5409 }
5410 if (test_opt(sb, DAX)) {
5411 ext4_msg(sb, KERN_ERR, "can't mount with "
5412 "both data=journal and dax");
5413 err = -EINVAL;
5414 goto restore_opts;
5415 }
5416 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5417 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5418 ext4_msg(sb, KERN_ERR, "can't mount with "
5419 "journal_async_commit in data=ordered mode");
5420 err = -EINVAL;
5421 goto restore_opts;
5422 }
5423 }
5424
5425 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5426 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5427 err = -EINVAL;
5428 goto restore_opts;
5429 }
5430
5431 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5432 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5433 "dax flag with busy inodes while remounting");
5434 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5435 }
5436
5437 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5438 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5439
5440 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5441 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5442
5443 es = sbi->s_es;
5444
5445 if (sbi->s_journal) {
5446 ext4_init_journal_params(sb, sbi->s_journal);
5447 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5448 }
5449
5450 if (*flags & SB_LAZYTIME)
5451 sb->s_flags |= SB_LAZYTIME;
5452
5453 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5454 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5455 err = -EROFS;
5456 goto restore_opts;
5457 }
5458
5459 if (*flags & SB_RDONLY) {
5460 err = sync_filesystem(sb);
5461 if (err < 0)
5462 goto restore_opts;
5463 err = dquot_suspend(sb, -1);
5464 if (err < 0)
5465 goto restore_opts;
5466
5467 /*
5468 * First of all, the unconditional stuff we have to do
5469 * to disable replay of the journal when we next remount
5470 */
5471 sb->s_flags |= SB_RDONLY;
5472
5473 /*
5474 * OK, test if we are remounting a valid rw partition
5475 * readonly, and if so set the rdonly flag and then
5476 * mark the partition as valid again.
5477 */
5478 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5479 (sbi->s_mount_state & EXT4_VALID_FS))
5480 es->s_state = cpu_to_le16(sbi->s_mount_state);
5481
5482 if (sbi->s_journal)
5483 ext4_mark_recovery_complete(sb, es);
5484 if (sbi->s_mmp_tsk)
5485 kthread_stop(sbi->s_mmp_tsk);
5486 } else {
5487 /* Make sure we can mount this feature set readwrite */
5488 if (ext4_has_feature_readonly(sb) ||
5489 !ext4_feature_set_ok(sb, 0)) {
5490 err = -EROFS;
5491 goto restore_opts;
5492 }
5493 /*
5494 * Make sure the group descriptor checksums
5495 * are sane. If they aren't, refuse to remount r/w.
5496 */
5497 for (g = 0; g < sbi->s_groups_count; g++) {
5498 struct ext4_group_desc *gdp =
5499 ext4_get_group_desc(sb, g, NULL);
5500
5501 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5502 ext4_msg(sb, KERN_ERR,
5503 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5504 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5505 le16_to_cpu(gdp->bg_checksum));
5506 err = -EFSBADCRC;
5507 goto restore_opts;
5508 }
5509 }
5510
5511 /*
5512 * If we have an unprocessed orphan list hanging
5513 * around from a previously readonly bdev mount,
5514 * require a full umount/remount for now.
5515 */
5516 if (es->s_last_orphan) {
5517 ext4_msg(sb, KERN_WARNING, "Couldn't "
5518 "remount RDWR because of unprocessed "
5519 "orphan inode list. Please "
5520 "umount/remount instead");
5521 err = -EINVAL;
5522 goto restore_opts;
5523 }
5524
5525 /*
5526 * Mounting a RDONLY partition read-write, so reread
5527 * and store the current valid flag. (It may have
5528 * been changed by e2fsck since we originally mounted
5529 * the partition.)
5530 */
5531 if (sbi->s_journal)
5532 ext4_clear_journal_err(sb, es);
5533 sbi->s_mount_state = le16_to_cpu(es->s_state);
5534
5535 err = ext4_setup_super(sb, es, 0);
5536 if (err)
5537 goto restore_opts;
5538
5539 sb->s_flags &= ~SB_RDONLY;
5540 if (ext4_has_feature_mmp(sb))
5541 if (ext4_multi_mount_protect(sb,
5542 le64_to_cpu(es->s_mmp_block))) {
5543 err = -EROFS;
5544 goto restore_opts;
5545 }
5546 enable_quota = 1;
5547 }
5548 }
5549
5550 /*
5551 * Reinitialize lazy itable initialization thread based on
5552 * current settings
5553 */
5554 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5555 ext4_unregister_li_request(sb);
5556 else {
5557 ext4_group_t first_not_zeroed;
5558 first_not_zeroed = ext4_has_uninit_itable(sb);
5559 ext4_register_li_request(sb, first_not_zeroed);
5560 }
5561
5562 ext4_setup_system_zone(sb);
5563 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5564 err = ext4_commit_super(sb, 1);
5565 if (err)
5566 goto restore_opts;
5567 }
5568
5569#ifdef CONFIG_QUOTA
5570 /* Release old quota file names */
5571 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5572 kfree(old_opts.s_qf_names[i]);
5573 if (enable_quota) {
5574 if (sb_any_quota_suspended(sb))
5575 dquot_resume(sb, -1);
5576 else if (ext4_has_feature_quota(sb)) {
5577 err = ext4_enable_quotas(sb);
5578 if (err)
5579 goto restore_opts;
5580 }
5581 }
5582#endif
5583
5584 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5585 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5586 kfree(orig_data);
5587 return 0;
5588
5589restore_opts:
5590 sb->s_flags = old_sb_flags;
5591 sbi->s_mount_opt = old_opts.s_mount_opt;
5592 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5593 sbi->s_resuid = old_opts.s_resuid;
5594 sbi->s_resgid = old_opts.s_resgid;
5595 sbi->s_commit_interval = old_opts.s_commit_interval;
5596 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5597 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5598#ifdef CONFIG_QUOTA
5599 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5600 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5601 to_free[i] = get_qf_name(sb, sbi, i);
5602 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5603 }
5604 synchronize_rcu();
5605 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5606 kfree(to_free[i]);
5607#endif
5608 kfree(orig_data);
5609 return err;
5610}
5611
5612#ifdef CONFIG_QUOTA
5613static int ext4_statfs_project(struct super_block *sb,
5614 kprojid_t projid, struct kstatfs *buf)
5615{
5616 struct kqid qid;
5617 struct dquot *dquot;
5618 u64 limit;
5619 u64 curblock;
5620
5621 qid = make_kqid_projid(projid);
5622 dquot = dqget(sb, qid);
5623 if (IS_ERR(dquot))
5624 return PTR_ERR(dquot);
5625 spin_lock(&dquot->dq_dqb_lock);
5626
5627 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5628 dquot->dq_dqb.dqb_bhardlimit);
5629 limit >>= sb->s_blocksize_bits;
5630
5631 if (limit && buf->f_blocks > limit) {
5632 curblock = (dquot->dq_dqb.dqb_curspace +
5633 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5634 buf->f_blocks = limit;
5635 buf->f_bfree = buf->f_bavail =
5636 (buf->f_blocks > curblock) ?
5637 (buf->f_blocks - curblock) : 0;
5638 }
5639
5640 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5641 dquot->dq_dqb.dqb_ihardlimit);
5642 if (limit && buf->f_files > limit) {
5643 buf->f_files = limit;
5644 buf->f_ffree =
5645 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5646 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5647 }
5648
5649 spin_unlock(&dquot->dq_dqb_lock);
5650 dqput(dquot);
5651 return 0;
5652}
5653#endif
5654
5655static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5656{
5657 struct super_block *sb = dentry->d_sb;
5658 struct ext4_sb_info *sbi = EXT4_SB(sb);
5659 struct ext4_super_block *es = sbi->s_es;
5660 ext4_fsblk_t overhead = 0, resv_blocks;
5661 u64 fsid;
5662 s64 bfree;
5663 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5664
5665 if (!test_opt(sb, MINIX_DF))
5666 overhead = sbi->s_overhead;
5667
5668 buf->f_type = EXT4_SUPER_MAGIC;
5669 buf->f_bsize = sb->s_blocksize;
5670 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5671 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5672 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5673 /* prevent underflow in case that few free space is available */
5674 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5675 buf->f_bavail = buf->f_bfree -
5676 (ext4_r_blocks_count(es) + resv_blocks);
5677 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5678 buf->f_bavail = 0;
5679 buf->f_files = le32_to_cpu(es->s_inodes_count);
5680 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5681 buf->f_namelen = EXT4_NAME_LEN;
5682 fsid = le64_to_cpup((void *)es->s_uuid) ^
5683 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5684 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5685 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5686
5687#ifdef CONFIG_QUOTA
5688 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5689 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5690 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5691#endif
5692 return 0;
5693}
5694
5695
5696#ifdef CONFIG_QUOTA
5697
5698/*
5699 * Helper functions so that transaction is started before we acquire dqio_sem
5700 * to keep correct lock ordering of transaction > dqio_sem
5701 */
5702static inline struct inode *dquot_to_inode(struct dquot *dquot)
5703{
5704 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5705}
5706
5707static int ext4_write_dquot(struct dquot *dquot)
5708{
5709 int ret, err;
5710 handle_t *handle;
5711 struct inode *inode;
5712
5713 inode = dquot_to_inode(dquot);
5714 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5715 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5716 if (IS_ERR(handle))
5717 return PTR_ERR(handle);
5718 ret = dquot_commit(dquot);
5719 err = ext4_journal_stop(handle);
5720 if (!ret)
5721 ret = err;
5722 return ret;
5723}
5724
5725static int ext4_acquire_dquot(struct dquot *dquot)
5726{
5727 int ret, err;
5728 handle_t *handle;
5729
5730 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5731 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5732 if (IS_ERR(handle))
5733 return PTR_ERR(handle);
5734 ret = dquot_acquire(dquot);
5735 err = ext4_journal_stop(handle);
5736 if (!ret)
5737 ret = err;
5738 return ret;
5739}
5740
5741static int ext4_release_dquot(struct dquot *dquot)
5742{
5743 int ret, err;
5744 handle_t *handle;
5745
5746 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5747 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5748 if (IS_ERR(handle)) {
5749 /* Release dquot anyway to avoid endless cycle in dqput() */
5750 dquot_release(dquot);
5751 return PTR_ERR(handle);
5752 }
5753 ret = dquot_release(dquot);
5754 err = ext4_journal_stop(handle);
5755 if (!ret)
5756 ret = err;
5757 return ret;
5758}
5759
5760static int ext4_mark_dquot_dirty(struct dquot *dquot)
5761{
5762 struct super_block *sb = dquot->dq_sb;
5763 struct ext4_sb_info *sbi = EXT4_SB(sb);
5764
5765 /* Are we journaling quotas? */
5766 if (ext4_has_feature_quota(sb) ||
5767 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5768 dquot_mark_dquot_dirty(dquot);
5769 return ext4_write_dquot(dquot);
5770 } else {
5771 return dquot_mark_dquot_dirty(dquot);
5772 }
5773}
5774
5775static int ext4_write_info(struct super_block *sb, int type)
5776{
5777 int ret, err;
5778 handle_t *handle;
5779
5780 /* Data block + inode block */
5781 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5782 if (IS_ERR(handle))
5783 return PTR_ERR(handle);
5784 ret = dquot_commit_info(sb, type);
5785 err = ext4_journal_stop(handle);
5786 if (!ret)
5787 ret = err;
5788 return ret;
5789}
5790
5791/*
5792 * Turn on quotas during mount time - we need to find
5793 * the quota file and such...
5794 */
5795static int ext4_quota_on_mount(struct super_block *sb, int type)
5796{
5797 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5798 EXT4_SB(sb)->s_jquota_fmt, type);
5799}
5800
5801static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5802{
5803 struct ext4_inode_info *ei = EXT4_I(inode);
5804
5805 /* The first argument of lockdep_set_subclass has to be
5806 * *exactly* the same as the argument to init_rwsem() --- in
5807 * this case, in init_once() --- or lockdep gets unhappy
5808 * because the name of the lock is set using the
5809 * stringification of the argument to init_rwsem().
5810 */
5811 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5812 lockdep_set_subclass(&ei->i_data_sem, subclass);
5813}
5814
5815/*
5816 * Standard function to be called on quota_on
5817 */
5818static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5819 const struct path *path)
5820{
5821 int err;
5822
5823 if (!test_opt(sb, QUOTA))
5824 return -EINVAL;
5825
5826 /* Quotafile not on the same filesystem? */
5827 if (path->dentry->d_sb != sb)
5828 return -EXDEV;
5829 /* Journaling quota? */
5830 if (EXT4_SB(sb)->s_qf_names[type]) {
5831 /* Quotafile not in fs root? */
5832 if (path->dentry->d_parent != sb->s_root)
5833 ext4_msg(sb, KERN_WARNING,
5834 "Quota file not on filesystem root. "
5835 "Journaled quota will not work");
5836 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5837 } else {
5838 /*
5839 * Clear the flag just in case mount options changed since
5840 * last time.
5841 */
5842 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5843 }
5844
5845 /*
5846 * When we journal data on quota file, we have to flush journal to see
5847 * all updates to the file when we bypass pagecache...
5848 */
5849 if (EXT4_SB(sb)->s_journal &&
5850 ext4_should_journal_data(d_inode(path->dentry))) {
5851 /*
5852 * We don't need to lock updates but journal_flush() could
5853 * otherwise be livelocked...
5854 */
5855 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5856 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5857 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5858 if (err)
5859 return err;
5860 }
5861
5862 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5863 err = dquot_quota_on(sb, type, format_id, path);
5864 if (err) {
5865 lockdep_set_quota_inode(path->dentry->d_inode,
5866 I_DATA_SEM_NORMAL);
5867 } else {
5868 struct inode *inode = d_inode(path->dentry);
5869 handle_t *handle;
5870
5871 /*
5872 * Set inode flags to prevent userspace from messing with quota
5873 * files. If this fails, we return success anyway since quotas
5874 * are already enabled and this is not a hard failure.
5875 */
5876 inode_lock(inode);
5877 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5878 if (IS_ERR(handle))
5879 goto unlock_inode;
5880 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5881 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5882 S_NOATIME | S_IMMUTABLE);
5883 ext4_mark_inode_dirty(handle, inode);
5884 ext4_journal_stop(handle);
5885 unlock_inode:
5886 inode_unlock(inode);
5887 }
5888 return err;
5889}
5890
5891static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5892 unsigned int flags)
5893{
5894 int err;
5895 struct inode *qf_inode;
5896 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5897 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5898 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5899 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5900 };
5901
5902 BUG_ON(!ext4_has_feature_quota(sb));
5903
5904 if (!qf_inums[type])
5905 return -EPERM;
5906
5907 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5908 if (IS_ERR(qf_inode)) {
5909 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5910 return PTR_ERR(qf_inode);
5911 }
5912
5913 /* Don't account quota for quota files to avoid recursion */
5914 qf_inode->i_flags |= S_NOQUOTA;
5915 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5916 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5917 if (err)
5918 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5919 iput(qf_inode);
5920
5921 return err;
5922}
5923
5924/* Enable usage tracking for all quota types. */
5925static int ext4_enable_quotas(struct super_block *sb)
5926{
5927 int type, err = 0;
5928 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5929 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5930 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5931 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5932 };
5933 bool quota_mopt[EXT4_MAXQUOTAS] = {
5934 test_opt(sb, USRQUOTA),
5935 test_opt(sb, GRPQUOTA),
5936 test_opt(sb, PRJQUOTA),
5937 };
5938
5939 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5940 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5941 if (qf_inums[type]) {
5942 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5943 DQUOT_USAGE_ENABLED |
5944 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5945 if (err) {
5946 ext4_warning(sb,
5947 "Failed to enable quota tracking "
5948 "(type=%d, err=%d). Please run "
5949 "e2fsck to fix.", type, err);
5950 for (type--; type >= 0; type--)
5951 dquot_quota_off(sb, type);
5952
5953 return err;
5954 }
5955 }
5956 }
5957 return 0;
5958}
5959
5960static int ext4_quota_off(struct super_block *sb, int type)
5961{
5962 struct inode *inode = sb_dqopt(sb)->files[type];
5963 handle_t *handle;
5964 int err;
5965
5966 /* Force all delayed allocation blocks to be allocated.
5967 * Caller already holds s_umount sem */
5968 if (test_opt(sb, DELALLOC))
5969 sync_filesystem(sb);
5970
5971 if (!inode || !igrab(inode))
5972 goto out;
5973
5974 err = dquot_quota_off(sb, type);
5975 if (err || ext4_has_feature_quota(sb))
5976 goto out_put;
5977
5978 inode_lock(inode);
5979 /*
5980 * Update modification times of quota files when userspace can
5981 * start looking at them. If we fail, we return success anyway since
5982 * this is not a hard failure and quotas are already disabled.
5983 */
5984 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5985 if (IS_ERR(handle))
5986 goto out_unlock;
5987 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5988 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5989 inode->i_mtime = inode->i_ctime = current_time(inode);
5990 ext4_mark_inode_dirty(handle, inode);
5991 ext4_journal_stop(handle);
5992out_unlock:
5993 inode_unlock(inode);
5994out_put:
5995 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5996 iput(inode);
5997 return err;
5998out:
5999 return dquot_quota_off(sb, type);
6000}
6001
6002/* Read data from quotafile - avoid pagecache and such because we cannot afford
6003 * acquiring the locks... As quota files are never truncated and quota code
6004 * itself serializes the operations (and no one else should touch the files)
6005 * we don't have to be afraid of races */
6006static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6007 size_t len, loff_t off)
6008{
6009 struct inode *inode = sb_dqopt(sb)->files[type];
6010 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6011 int offset = off & (sb->s_blocksize - 1);
6012 int tocopy;
6013 size_t toread;
6014 struct buffer_head *bh;
6015 loff_t i_size = i_size_read(inode);
6016
6017 if (off > i_size)
6018 return 0;
6019 if (off+len > i_size)
6020 len = i_size-off;
6021 toread = len;
6022 while (toread > 0) {
6023 tocopy = sb->s_blocksize - offset < toread ?
6024 sb->s_blocksize - offset : toread;
6025 bh = ext4_bread(NULL, inode, blk, 0);
6026 if (IS_ERR(bh))
6027 return PTR_ERR(bh);
6028 if (!bh) /* A hole? */
6029 memset(data, 0, tocopy);
6030 else
6031 memcpy(data, bh->b_data+offset, tocopy);
6032 brelse(bh);
6033 offset = 0;
6034 toread -= tocopy;
6035 data += tocopy;
6036 blk++;
6037 }
6038 return len;
6039}
6040
6041/* Write to quotafile (we know the transaction is already started and has
6042 * enough credits) */
6043static ssize_t ext4_quota_write(struct super_block *sb, int type,
6044 const char *data, size_t len, loff_t off)
6045{
6046 struct inode *inode = sb_dqopt(sb)->files[type];
6047 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6048 int err, offset = off & (sb->s_blocksize - 1);
6049 int retries = 0;
6050 struct buffer_head *bh;
6051 handle_t *handle = journal_current_handle();
6052
6053 if (EXT4_SB(sb)->s_journal && !handle) {
6054 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6055 " cancelled because transaction is not started",
6056 (unsigned long long)off, (unsigned long long)len);
6057 return -EIO;
6058 }
6059 /*
6060 * Since we account only one data block in transaction credits,
6061 * then it is impossible to cross a block boundary.
6062 */
6063 if (sb->s_blocksize - offset < len) {
6064 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6065 " cancelled because not block aligned",
6066 (unsigned long long)off, (unsigned long long)len);
6067 return -EIO;
6068 }
6069
6070 do {
6071 bh = ext4_bread(handle, inode, blk,
6072 EXT4_GET_BLOCKS_CREATE |
6073 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6074 } while (PTR_ERR(bh) == -ENOSPC &&
6075 ext4_should_retry_alloc(inode->i_sb, &retries));
6076 if (IS_ERR(bh))
6077 return PTR_ERR(bh);
6078 if (!bh)
6079 goto out;
6080 BUFFER_TRACE(bh, "get write access");
6081 err = ext4_journal_get_write_access(handle, bh);
6082 if (err) {
6083 brelse(bh);
6084 return err;
6085 }
6086 lock_buffer(bh);
6087 memcpy(bh->b_data+offset, data, len);
6088 flush_dcache_page(bh->b_page);
6089 unlock_buffer(bh);
6090 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6091 brelse(bh);
6092out:
6093 if (inode->i_size < off + len) {
6094 i_size_write(inode, off + len);
6095 EXT4_I(inode)->i_disksize = inode->i_size;
6096 ext4_mark_inode_dirty(handle, inode);
6097 }
6098 return len;
6099}
6100#endif
6101
6102static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6103 const char *dev_name, void *data)
6104{
6105 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6106}
6107
6108#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6109static inline void register_as_ext2(void)
6110{
6111 int err = register_filesystem(&ext2_fs_type);
6112 if (err)
6113 printk(KERN_WARNING
6114 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6115}
6116
6117static inline void unregister_as_ext2(void)
6118{
6119 unregister_filesystem(&ext2_fs_type);
6120}
6121
6122static inline int ext2_feature_set_ok(struct super_block *sb)
6123{
6124 if (ext4_has_unknown_ext2_incompat_features(sb))
6125 return 0;
6126 if (sb_rdonly(sb))
6127 return 1;
6128 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6129 return 0;
6130 return 1;
6131}
6132#else
6133static inline void register_as_ext2(void) { }
6134static inline void unregister_as_ext2(void) { }
6135static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6136#endif
6137
6138static inline void register_as_ext3(void)
6139{
6140 int err = register_filesystem(&ext3_fs_type);
6141 if (err)
6142 printk(KERN_WARNING
6143 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6144}
6145
6146static inline void unregister_as_ext3(void)
6147{
6148 unregister_filesystem(&ext3_fs_type);
6149}
6150
6151static inline int ext3_feature_set_ok(struct super_block *sb)
6152{
6153 if (ext4_has_unknown_ext3_incompat_features(sb))
6154 return 0;
6155 if (!ext4_has_feature_journal(sb))
6156 return 0;
6157 if (sb_rdonly(sb))
6158 return 1;
6159 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6160 return 0;
6161 return 1;
6162}
6163
6164static struct file_system_type ext4_fs_type = {
6165 .owner = THIS_MODULE,
6166 .name = "ext4",
6167 .mount = ext4_mount,
6168 .kill_sb = kill_block_super,
6169 .fs_flags = FS_REQUIRES_DEV,
6170};
6171MODULE_ALIAS_FS("ext4");
6172
6173/* Shared across all ext4 file systems */
6174wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6175
6176static int __init ext4_init_fs(void)
6177{
6178 int i, err;
6179
6180 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6181 ext4_li_info = NULL;
6182 mutex_init(&ext4_li_mtx);
6183
6184 /* Build-time check for flags consistency */
6185 ext4_check_flag_values();
6186
6187 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6188 init_waitqueue_head(&ext4__ioend_wq[i]);
6189
6190 err = ext4_init_es();
6191 if (err)
6192 return err;
6193
6194 err = ext4_init_pending();
6195 if (err)
6196 goto out7;
6197
6198 err = ext4_init_post_read_processing();
6199 if (err)
6200 goto out6;
6201
6202 err = ext4_init_pageio();
6203 if (err)
6204 goto out5;
6205
6206 err = ext4_init_system_zone();
6207 if (err)
6208 goto out4;
6209
6210 err = ext4_init_sysfs();
6211 if (err)
6212 goto out3;
6213
6214 err = ext4_init_mballoc();
6215 if (err)
6216 goto out2;
6217 err = init_inodecache();
6218 if (err)
6219 goto out1;
6220 register_as_ext3();
6221 register_as_ext2();
6222 err = register_filesystem(&ext4_fs_type);
6223 if (err)
6224 goto out;
6225
6226 return 0;
6227out:
6228 unregister_as_ext2();
6229 unregister_as_ext3();
6230 destroy_inodecache();
6231out1:
6232 ext4_exit_mballoc();
6233out2:
6234 ext4_exit_sysfs();
6235out3:
6236 ext4_exit_system_zone();
6237out4:
6238 ext4_exit_pageio();
6239out5:
6240 ext4_exit_post_read_processing();
6241out6:
6242 ext4_exit_pending();
6243out7:
6244 ext4_exit_es();
6245
6246 return err;
6247}
6248
6249static void __exit ext4_exit_fs(void)
6250{
6251 ext4_destroy_lazyinit_thread();
6252 unregister_as_ext2();
6253 unregister_as_ext3();
6254 unregister_filesystem(&ext4_fs_type);
6255 destroy_inodecache();
6256 ext4_exit_mballoc();
6257 ext4_exit_sysfs();
6258 ext4_exit_system_zone();
6259 ext4_exit_pageio();
6260 ext4_exit_post_read_processing();
6261 ext4_exit_es();
6262 ext4_exit_pending();
6263}
6264
6265MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6266MODULE_DESCRIPTION("Fourth Extended Filesystem");
6267MODULE_LICENSE("GPL");
6268MODULE_SOFTDEP("pre: crc32c");
6269module_init(ext4_init_fs)
6270module_exit(ext4_exit_fs)
4823 ext4_blkdev_remove(sbi);
4824 brelse(bh);
4825out_fail:
4826 sb->s_fs_info = NULL;
4827 kfree(sbi->s_blockgroup_lock);
4828out_free_base:
4829 kfree(sbi);
4830 kfree(orig_data);
4831 fs_put_dax(dax_dev);
4832 return err ? err : ret;
4833}
4834
4835/*
4836 * Setup any per-fs journal parameters now. We'll do this both on
4837 * initial mount, once the journal has been initialised but before we've
4838 * done any recovery; and again on any subsequent remount.
4839 */
4840static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4841{
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4843
4844 journal->j_commit_interval = sbi->s_commit_interval;
4845 journal->j_min_batch_time = sbi->s_min_batch_time;
4846 journal->j_max_batch_time = sbi->s_max_batch_time;
4847
4848 write_lock(&journal->j_state_lock);
4849 if (test_opt(sb, BARRIER))
4850 journal->j_flags |= JBD2_BARRIER;
4851 else
4852 journal->j_flags &= ~JBD2_BARRIER;
4853 if (test_opt(sb, DATA_ERR_ABORT))
4854 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4855 else
4856 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4857 write_unlock(&journal->j_state_lock);
4858}
4859
4860static struct inode *ext4_get_journal_inode(struct super_block *sb,
4861 unsigned int journal_inum)
4862{
4863 struct inode *journal_inode;
4864
4865 /*
4866 * Test for the existence of a valid inode on disk. Bad things
4867 * happen if we iget() an unused inode, as the subsequent iput()
4868 * will try to delete it.
4869 */
4870 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4871 if (IS_ERR(journal_inode)) {
4872 ext4_msg(sb, KERN_ERR, "no journal found");
4873 return NULL;
4874 }
4875 if (!journal_inode->i_nlink) {
4876 make_bad_inode(journal_inode);
4877 iput(journal_inode);
4878 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4879 return NULL;
4880 }
4881
4882 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4883 journal_inode, journal_inode->i_size);
4884 if (!S_ISREG(journal_inode->i_mode)) {
4885 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4886 iput(journal_inode);
4887 return NULL;
4888 }
4889 return journal_inode;
4890}
4891
4892static journal_t *ext4_get_journal(struct super_block *sb,
4893 unsigned int journal_inum)
4894{
4895 struct inode *journal_inode;
4896 journal_t *journal;
4897
4898 BUG_ON(!ext4_has_feature_journal(sb));
4899
4900 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4901 if (!journal_inode)
4902 return NULL;
4903
4904 journal = jbd2_journal_init_inode(journal_inode);
4905 if (!journal) {
4906 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4907 iput(journal_inode);
4908 return NULL;
4909 }
4910 journal->j_private = sb;
4911 ext4_init_journal_params(sb, journal);
4912 return journal;
4913}
4914
4915static journal_t *ext4_get_dev_journal(struct super_block *sb,
4916 dev_t j_dev)
4917{
4918 struct buffer_head *bh;
4919 journal_t *journal;
4920 ext4_fsblk_t start;
4921 ext4_fsblk_t len;
4922 int hblock, blocksize;
4923 ext4_fsblk_t sb_block;
4924 unsigned long offset;
4925 struct ext4_super_block *es;
4926 struct block_device *bdev;
4927
4928 BUG_ON(!ext4_has_feature_journal(sb));
4929
4930 bdev = ext4_blkdev_get(j_dev, sb);
4931 if (bdev == NULL)
4932 return NULL;
4933
4934 blocksize = sb->s_blocksize;
4935 hblock = bdev_logical_block_size(bdev);
4936 if (blocksize < hblock) {
4937 ext4_msg(sb, KERN_ERR,
4938 "blocksize too small for journal device");
4939 goto out_bdev;
4940 }
4941
4942 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4943 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4944 set_blocksize(bdev, blocksize);
4945 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4946 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4947 "external journal");
4948 goto out_bdev;
4949 }
4950
4951 es = (struct ext4_super_block *) (bh->b_data + offset);
4952 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4953 !(le32_to_cpu(es->s_feature_incompat) &
4954 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4955 ext4_msg(sb, KERN_ERR, "external journal has "
4956 "bad superblock");
4957 brelse(bh);
4958 goto out_bdev;
4959 }
4960
4961 if ((le32_to_cpu(es->s_feature_ro_compat) &
4962 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4963 es->s_checksum != ext4_superblock_csum(sb, es)) {
4964 ext4_msg(sb, KERN_ERR, "external journal has "
4965 "corrupt superblock");
4966 brelse(bh);
4967 goto out_bdev;
4968 }
4969
4970 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4971 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4972 brelse(bh);
4973 goto out_bdev;
4974 }
4975
4976 len = ext4_blocks_count(es);
4977 start = sb_block + 1;
4978 brelse(bh); /* we're done with the superblock */
4979
4980 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4981 start, len, blocksize);
4982 if (!journal) {
4983 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4984 goto out_bdev;
4985 }
4986 journal->j_private = sb;
4987 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4988 wait_on_buffer(journal->j_sb_buffer);
4989 if (!buffer_uptodate(journal->j_sb_buffer)) {
4990 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4991 goto out_journal;
4992 }
4993 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4994 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4995 "user (unsupported) - %d",
4996 be32_to_cpu(journal->j_superblock->s_nr_users));
4997 goto out_journal;
4998 }
4999 EXT4_SB(sb)->journal_bdev = bdev;
5000 ext4_init_journal_params(sb, journal);
5001 return journal;
5002
5003out_journal:
5004 jbd2_journal_destroy(journal);
5005out_bdev:
5006 ext4_blkdev_put(bdev);
5007 return NULL;
5008}
5009
5010static int ext4_load_journal(struct super_block *sb,
5011 struct ext4_super_block *es,
5012 unsigned long journal_devnum)
5013{
5014 journal_t *journal;
5015 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5016 dev_t journal_dev;
5017 int err = 0;
5018 int really_read_only;
5019
5020 BUG_ON(!ext4_has_feature_journal(sb));
5021
5022 if (journal_devnum &&
5023 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5024 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5025 "numbers have changed");
5026 journal_dev = new_decode_dev(journal_devnum);
5027 } else
5028 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5029
5030 really_read_only = bdev_read_only(sb->s_bdev);
5031
5032 /*
5033 * Are we loading a blank journal or performing recovery after a
5034 * crash? For recovery, we need to check in advance whether we
5035 * can get read-write access to the device.
5036 */
5037 if (ext4_has_feature_journal_needs_recovery(sb)) {
5038 if (sb_rdonly(sb)) {
5039 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5040 "required on readonly filesystem");
5041 if (really_read_only) {
5042 ext4_msg(sb, KERN_ERR, "write access "
5043 "unavailable, cannot proceed "
5044 "(try mounting with noload)");
5045 return -EROFS;
5046 }
5047 ext4_msg(sb, KERN_INFO, "write access will "
5048 "be enabled during recovery");
5049 }
5050 }
5051
5052 if (journal_inum && journal_dev) {
5053 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
5054 "and inode journals!");
5055 return -EINVAL;
5056 }
5057
5058 if (journal_inum) {
5059 if (!(journal = ext4_get_journal(sb, journal_inum)))
5060 return -EINVAL;
5061 } else {
5062 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
5063 return -EINVAL;
5064 }
5065
5066 if (!(journal->j_flags & JBD2_BARRIER))
5067 ext4_msg(sb, KERN_INFO, "barriers disabled");
5068
5069 if (!ext4_has_feature_journal_needs_recovery(sb))
5070 err = jbd2_journal_wipe(journal, !really_read_only);
5071 if (!err) {
5072 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5073 if (save)
5074 memcpy(save, ((char *) es) +
5075 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5076 err = jbd2_journal_load(journal);
5077 if (save)
5078 memcpy(((char *) es) + EXT4_S_ERR_START,
5079 save, EXT4_S_ERR_LEN);
5080 kfree(save);
5081 }
5082
5083 if (err) {
5084 ext4_msg(sb, KERN_ERR, "error loading journal");
5085 jbd2_journal_destroy(journal);
5086 return err;
5087 }
5088
5089 EXT4_SB(sb)->s_journal = journal;
5090 ext4_clear_journal_err(sb, es);
5091
5092 if (!really_read_only && journal_devnum &&
5093 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5094 es->s_journal_dev = cpu_to_le32(journal_devnum);
5095
5096 /* Make sure we flush the recovery flag to disk. */
5097 ext4_commit_super(sb, 1);
5098 }
5099
5100 return 0;
5101}
5102
5103static int ext4_commit_super(struct super_block *sb, int sync)
5104{
5105 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5106 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5107 int error = 0;
5108
5109 if (!sbh || block_device_ejected(sb))
5110 return error;
5111
5112 /*
5113 * The superblock bh should be mapped, but it might not be if the
5114 * device was hot-removed. Not much we can do but fail the I/O.
5115 */
5116 if (!buffer_mapped(sbh))
5117 return error;
5118
5119 /*
5120 * If the file system is mounted read-only, don't update the
5121 * superblock write time. This avoids updating the superblock
5122 * write time when we are mounting the root file system
5123 * read/only but we need to replay the journal; at that point,
5124 * for people who are east of GMT and who make their clock
5125 * tick in localtime for Windows bug-for-bug compatibility,
5126 * the clock is set in the future, and this will cause e2fsck
5127 * to complain and force a full file system check.
5128 */
5129 if (!(sb->s_flags & SB_RDONLY))
5130 ext4_update_tstamp(es, s_wtime);
5131 if (sb->s_bdev->bd_part)
5132 es->s_kbytes_written =
5133 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5134 ((part_stat_read(sb->s_bdev->bd_part,
5135 sectors[STAT_WRITE]) -
5136 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5137 else
5138 es->s_kbytes_written =
5139 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5140 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5141 ext4_free_blocks_count_set(es,
5142 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5143 &EXT4_SB(sb)->s_freeclusters_counter)));
5144 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5145 es->s_free_inodes_count =
5146 cpu_to_le32(percpu_counter_sum_positive(
5147 &EXT4_SB(sb)->s_freeinodes_counter));
5148 BUFFER_TRACE(sbh, "marking dirty");
5149 ext4_superblock_csum_set(sb);
5150 if (sync)
5151 lock_buffer(sbh);
5152 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5153 /*
5154 * Oh, dear. A previous attempt to write the
5155 * superblock failed. This could happen because the
5156 * USB device was yanked out. Or it could happen to
5157 * be a transient write error and maybe the block will
5158 * be remapped. Nothing we can do but to retry the
5159 * write and hope for the best.
5160 */
5161 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5162 "superblock detected");
5163 clear_buffer_write_io_error(sbh);
5164 set_buffer_uptodate(sbh);
5165 }
5166 mark_buffer_dirty(sbh);
5167 if (sync) {
5168 unlock_buffer(sbh);
5169 error = __sync_dirty_buffer(sbh,
5170 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5171 if (buffer_write_io_error(sbh)) {
5172 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5173 "superblock");
5174 clear_buffer_write_io_error(sbh);
5175 set_buffer_uptodate(sbh);
5176 }
5177 }
5178 return error;
5179}
5180
5181/*
5182 * Have we just finished recovery? If so, and if we are mounting (or
5183 * remounting) the filesystem readonly, then we will end up with a
5184 * consistent fs on disk. Record that fact.
5185 */
5186static void ext4_mark_recovery_complete(struct super_block *sb,
5187 struct ext4_super_block *es)
5188{
5189 journal_t *journal = EXT4_SB(sb)->s_journal;
5190
5191 if (!ext4_has_feature_journal(sb)) {
5192 BUG_ON(journal != NULL);
5193 return;
5194 }
5195 jbd2_journal_lock_updates(journal);
5196 if (jbd2_journal_flush(journal) < 0)
5197 goto out;
5198
5199 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5200 ext4_clear_feature_journal_needs_recovery(sb);
5201 ext4_commit_super(sb, 1);
5202 }
5203
5204out:
5205 jbd2_journal_unlock_updates(journal);
5206}
5207
5208/*
5209 * If we are mounting (or read-write remounting) a filesystem whose journal
5210 * has recorded an error from a previous lifetime, move that error to the
5211 * main filesystem now.
5212 */
5213static void ext4_clear_journal_err(struct super_block *sb,
5214 struct ext4_super_block *es)
5215{
5216 journal_t *journal;
5217 int j_errno;
5218 const char *errstr;
5219
5220 BUG_ON(!ext4_has_feature_journal(sb));
5221
5222 journal = EXT4_SB(sb)->s_journal;
5223
5224 /*
5225 * Now check for any error status which may have been recorded in the
5226 * journal by a prior ext4_error() or ext4_abort()
5227 */
5228
5229 j_errno = jbd2_journal_errno(journal);
5230 if (j_errno) {
5231 char nbuf[16];
5232
5233 errstr = ext4_decode_error(sb, j_errno, nbuf);
5234 ext4_warning(sb, "Filesystem error recorded "
5235 "from previous mount: %s", errstr);
5236 ext4_warning(sb, "Marking fs in need of filesystem check.");
5237
5238 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5239 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5240 ext4_commit_super(sb, 1);
5241
5242 jbd2_journal_clear_err(journal);
5243 jbd2_journal_update_sb_errno(journal);
5244 }
5245}
5246
5247/*
5248 * Force the running and committing transactions to commit,
5249 * and wait on the commit.
5250 */
5251int ext4_force_commit(struct super_block *sb)
5252{
5253 journal_t *journal;
5254
5255 if (sb_rdonly(sb))
5256 return 0;
5257
5258 journal = EXT4_SB(sb)->s_journal;
5259 return ext4_journal_force_commit(journal);
5260}
5261
5262static int ext4_sync_fs(struct super_block *sb, int wait)
5263{
5264 int ret = 0;
5265 tid_t target;
5266 bool needs_barrier = false;
5267 struct ext4_sb_info *sbi = EXT4_SB(sb);
5268
5269 if (unlikely(ext4_forced_shutdown(sbi)))
5270 return 0;
5271
5272 trace_ext4_sync_fs(sb, wait);
5273 flush_workqueue(sbi->rsv_conversion_wq);
5274 /*
5275 * Writeback quota in non-journalled quota case - journalled quota has
5276 * no dirty dquots
5277 */
5278 dquot_writeback_dquots(sb, -1);
5279 /*
5280 * Data writeback is possible w/o journal transaction, so barrier must
5281 * being sent at the end of the function. But we can skip it if
5282 * transaction_commit will do it for us.
5283 */
5284 if (sbi->s_journal) {
5285 target = jbd2_get_latest_transaction(sbi->s_journal);
5286 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5287 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5288 needs_barrier = true;
5289
5290 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5291 if (wait)
5292 ret = jbd2_log_wait_commit(sbi->s_journal,
5293 target);
5294 }
5295 } else if (wait && test_opt(sb, BARRIER))
5296 needs_barrier = true;
5297 if (needs_barrier) {
5298 int err;
5299 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5300 if (!ret)
5301 ret = err;
5302 }
5303
5304 return ret;
5305}
5306
5307/*
5308 * LVM calls this function before a (read-only) snapshot is created. This
5309 * gives us a chance to flush the journal completely and mark the fs clean.
5310 *
5311 * Note that only this function cannot bring a filesystem to be in a clean
5312 * state independently. It relies on upper layer to stop all data & metadata
5313 * modifications.
5314 */
5315static int ext4_freeze(struct super_block *sb)
5316{
5317 int error = 0;
5318 journal_t *journal;
5319
5320 if (sb_rdonly(sb))
5321 return 0;
5322
5323 journal = EXT4_SB(sb)->s_journal;
5324
5325 if (journal) {
5326 /* Now we set up the journal barrier. */
5327 jbd2_journal_lock_updates(journal);
5328
5329 /*
5330 * Don't clear the needs_recovery flag if we failed to
5331 * flush the journal.
5332 */
5333 error = jbd2_journal_flush(journal);
5334 if (error < 0)
5335 goto out;
5336
5337 /* Journal blocked and flushed, clear needs_recovery flag. */
5338 ext4_clear_feature_journal_needs_recovery(sb);
5339 }
5340
5341 error = ext4_commit_super(sb, 1);
5342out:
5343 if (journal)
5344 /* we rely on upper layer to stop further updates */
5345 jbd2_journal_unlock_updates(journal);
5346 return error;
5347}
5348
5349/*
5350 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5351 * flag here, even though the filesystem is not technically dirty yet.
5352 */
5353static int ext4_unfreeze(struct super_block *sb)
5354{
5355 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5356 return 0;
5357
5358 if (EXT4_SB(sb)->s_journal) {
5359 /* Reset the needs_recovery flag before the fs is unlocked. */
5360 ext4_set_feature_journal_needs_recovery(sb);
5361 }
5362
5363 ext4_commit_super(sb, 1);
5364 return 0;
5365}
5366
5367/*
5368 * Structure to save mount options for ext4_remount's benefit
5369 */
5370struct ext4_mount_options {
5371 unsigned long s_mount_opt;
5372 unsigned long s_mount_opt2;
5373 kuid_t s_resuid;
5374 kgid_t s_resgid;
5375 unsigned long s_commit_interval;
5376 u32 s_min_batch_time, s_max_batch_time;
5377#ifdef CONFIG_QUOTA
5378 int s_jquota_fmt;
5379 char *s_qf_names[EXT4_MAXQUOTAS];
5380#endif
5381};
5382
5383static int ext4_remount(struct super_block *sb, int *flags, char *data)
5384{
5385 struct ext4_super_block *es;
5386 struct ext4_sb_info *sbi = EXT4_SB(sb);
5387 unsigned long old_sb_flags;
5388 struct ext4_mount_options old_opts;
5389 int enable_quota = 0;
5390 ext4_group_t g;
5391 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5392 int err = 0;
5393#ifdef CONFIG_QUOTA
5394 int i, j;
5395 char *to_free[EXT4_MAXQUOTAS];
5396#endif
5397 char *orig_data = kstrdup(data, GFP_KERNEL);
5398
5399 if (data && !orig_data)
5400 return -ENOMEM;
5401
5402 /* Store the original options */
5403 old_sb_flags = sb->s_flags;
5404 old_opts.s_mount_opt = sbi->s_mount_opt;
5405 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5406 old_opts.s_resuid = sbi->s_resuid;
5407 old_opts.s_resgid = sbi->s_resgid;
5408 old_opts.s_commit_interval = sbi->s_commit_interval;
5409 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5410 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5411#ifdef CONFIG_QUOTA
5412 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5413 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5414 if (sbi->s_qf_names[i]) {
5415 char *qf_name = get_qf_name(sb, sbi, i);
5416
5417 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5418 if (!old_opts.s_qf_names[i]) {
5419 for (j = 0; j < i; j++)
5420 kfree(old_opts.s_qf_names[j]);
5421 kfree(orig_data);
5422 return -ENOMEM;
5423 }
5424 } else
5425 old_opts.s_qf_names[i] = NULL;
5426#endif
5427 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5428 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5429
5430 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5431 err = -EINVAL;
5432 goto restore_opts;
5433 }
5434
5435 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5436 test_opt(sb, JOURNAL_CHECKSUM)) {
5437 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5438 "during remount not supported; ignoring");
5439 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5440 }
5441
5442 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5443 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5444 ext4_msg(sb, KERN_ERR, "can't mount with "
5445 "both data=journal and delalloc");
5446 err = -EINVAL;
5447 goto restore_opts;
5448 }
5449 if (test_opt(sb, DIOREAD_NOLOCK)) {
5450 ext4_msg(sb, KERN_ERR, "can't mount with "
5451 "both data=journal and dioread_nolock");
5452 err = -EINVAL;
5453 goto restore_opts;
5454 }
5455 if (test_opt(sb, DAX)) {
5456 ext4_msg(sb, KERN_ERR, "can't mount with "
5457 "both data=journal and dax");
5458 err = -EINVAL;
5459 goto restore_opts;
5460 }
5461 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5462 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5463 ext4_msg(sb, KERN_ERR, "can't mount with "
5464 "journal_async_commit in data=ordered mode");
5465 err = -EINVAL;
5466 goto restore_opts;
5467 }
5468 }
5469
5470 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5471 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5472 err = -EINVAL;
5473 goto restore_opts;
5474 }
5475
5476 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5477 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5478 "dax flag with busy inodes while remounting");
5479 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5480 }
5481
5482 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5483 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5484
5485 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5486 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5487
5488 es = sbi->s_es;
5489
5490 if (sbi->s_journal) {
5491 ext4_init_journal_params(sb, sbi->s_journal);
5492 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5493 }
5494
5495 if (*flags & SB_LAZYTIME)
5496 sb->s_flags |= SB_LAZYTIME;
5497
5498 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5499 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5500 err = -EROFS;
5501 goto restore_opts;
5502 }
5503
5504 if (*flags & SB_RDONLY) {
5505 err = sync_filesystem(sb);
5506 if (err < 0)
5507 goto restore_opts;
5508 err = dquot_suspend(sb, -1);
5509 if (err < 0)
5510 goto restore_opts;
5511
5512 /*
5513 * First of all, the unconditional stuff we have to do
5514 * to disable replay of the journal when we next remount
5515 */
5516 sb->s_flags |= SB_RDONLY;
5517
5518 /*
5519 * OK, test if we are remounting a valid rw partition
5520 * readonly, and if so set the rdonly flag and then
5521 * mark the partition as valid again.
5522 */
5523 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5524 (sbi->s_mount_state & EXT4_VALID_FS))
5525 es->s_state = cpu_to_le16(sbi->s_mount_state);
5526
5527 if (sbi->s_journal)
5528 ext4_mark_recovery_complete(sb, es);
5529 if (sbi->s_mmp_tsk)
5530 kthread_stop(sbi->s_mmp_tsk);
5531 } else {
5532 /* Make sure we can mount this feature set readwrite */
5533 if (ext4_has_feature_readonly(sb) ||
5534 !ext4_feature_set_ok(sb, 0)) {
5535 err = -EROFS;
5536 goto restore_opts;
5537 }
5538 /*
5539 * Make sure the group descriptor checksums
5540 * are sane. If they aren't, refuse to remount r/w.
5541 */
5542 for (g = 0; g < sbi->s_groups_count; g++) {
5543 struct ext4_group_desc *gdp =
5544 ext4_get_group_desc(sb, g, NULL);
5545
5546 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5547 ext4_msg(sb, KERN_ERR,
5548 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5549 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5550 le16_to_cpu(gdp->bg_checksum));
5551 err = -EFSBADCRC;
5552 goto restore_opts;
5553 }
5554 }
5555
5556 /*
5557 * If we have an unprocessed orphan list hanging
5558 * around from a previously readonly bdev mount,
5559 * require a full umount/remount for now.
5560 */
5561 if (es->s_last_orphan) {
5562 ext4_msg(sb, KERN_WARNING, "Couldn't "
5563 "remount RDWR because of unprocessed "
5564 "orphan inode list. Please "
5565 "umount/remount instead");
5566 err = -EINVAL;
5567 goto restore_opts;
5568 }
5569
5570 /*
5571 * Mounting a RDONLY partition read-write, so reread
5572 * and store the current valid flag. (It may have
5573 * been changed by e2fsck since we originally mounted
5574 * the partition.)
5575 */
5576 if (sbi->s_journal)
5577 ext4_clear_journal_err(sb, es);
5578 sbi->s_mount_state = le16_to_cpu(es->s_state);
5579
5580 err = ext4_setup_super(sb, es, 0);
5581 if (err)
5582 goto restore_opts;
5583
5584 sb->s_flags &= ~SB_RDONLY;
5585 if (ext4_has_feature_mmp(sb))
5586 if (ext4_multi_mount_protect(sb,
5587 le64_to_cpu(es->s_mmp_block))) {
5588 err = -EROFS;
5589 goto restore_opts;
5590 }
5591 enable_quota = 1;
5592 }
5593 }
5594
5595 /*
5596 * Reinitialize lazy itable initialization thread based on
5597 * current settings
5598 */
5599 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5600 ext4_unregister_li_request(sb);
5601 else {
5602 ext4_group_t first_not_zeroed;
5603 first_not_zeroed = ext4_has_uninit_itable(sb);
5604 ext4_register_li_request(sb, first_not_zeroed);
5605 }
5606
5607 ext4_setup_system_zone(sb);
5608 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5609 err = ext4_commit_super(sb, 1);
5610 if (err)
5611 goto restore_opts;
5612 }
5613
5614#ifdef CONFIG_QUOTA
5615 /* Release old quota file names */
5616 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5617 kfree(old_opts.s_qf_names[i]);
5618 if (enable_quota) {
5619 if (sb_any_quota_suspended(sb))
5620 dquot_resume(sb, -1);
5621 else if (ext4_has_feature_quota(sb)) {
5622 err = ext4_enable_quotas(sb);
5623 if (err)
5624 goto restore_opts;
5625 }
5626 }
5627#endif
5628
5629 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5630 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5631 kfree(orig_data);
5632 return 0;
5633
5634restore_opts:
5635 sb->s_flags = old_sb_flags;
5636 sbi->s_mount_opt = old_opts.s_mount_opt;
5637 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5638 sbi->s_resuid = old_opts.s_resuid;
5639 sbi->s_resgid = old_opts.s_resgid;
5640 sbi->s_commit_interval = old_opts.s_commit_interval;
5641 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5642 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5643#ifdef CONFIG_QUOTA
5644 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5645 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5646 to_free[i] = get_qf_name(sb, sbi, i);
5647 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5648 }
5649 synchronize_rcu();
5650 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5651 kfree(to_free[i]);
5652#endif
5653 kfree(orig_data);
5654 return err;
5655}
5656
5657#ifdef CONFIG_QUOTA
5658static int ext4_statfs_project(struct super_block *sb,
5659 kprojid_t projid, struct kstatfs *buf)
5660{
5661 struct kqid qid;
5662 struct dquot *dquot;
5663 u64 limit;
5664 u64 curblock;
5665
5666 qid = make_kqid_projid(projid);
5667 dquot = dqget(sb, qid);
5668 if (IS_ERR(dquot))
5669 return PTR_ERR(dquot);
5670 spin_lock(&dquot->dq_dqb_lock);
5671
5672 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5673 dquot->dq_dqb.dqb_bhardlimit);
5674 limit >>= sb->s_blocksize_bits;
5675
5676 if (limit && buf->f_blocks > limit) {
5677 curblock = (dquot->dq_dqb.dqb_curspace +
5678 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5679 buf->f_blocks = limit;
5680 buf->f_bfree = buf->f_bavail =
5681 (buf->f_blocks > curblock) ?
5682 (buf->f_blocks - curblock) : 0;
5683 }
5684
5685 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5686 dquot->dq_dqb.dqb_ihardlimit);
5687 if (limit && buf->f_files > limit) {
5688 buf->f_files = limit;
5689 buf->f_ffree =
5690 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5691 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5692 }
5693
5694 spin_unlock(&dquot->dq_dqb_lock);
5695 dqput(dquot);
5696 return 0;
5697}
5698#endif
5699
5700static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5701{
5702 struct super_block *sb = dentry->d_sb;
5703 struct ext4_sb_info *sbi = EXT4_SB(sb);
5704 struct ext4_super_block *es = sbi->s_es;
5705 ext4_fsblk_t overhead = 0, resv_blocks;
5706 u64 fsid;
5707 s64 bfree;
5708 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5709
5710 if (!test_opt(sb, MINIX_DF))
5711 overhead = sbi->s_overhead;
5712
5713 buf->f_type = EXT4_SUPER_MAGIC;
5714 buf->f_bsize = sb->s_blocksize;
5715 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5716 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5717 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5718 /* prevent underflow in case that few free space is available */
5719 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5720 buf->f_bavail = buf->f_bfree -
5721 (ext4_r_blocks_count(es) + resv_blocks);
5722 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5723 buf->f_bavail = 0;
5724 buf->f_files = le32_to_cpu(es->s_inodes_count);
5725 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5726 buf->f_namelen = EXT4_NAME_LEN;
5727 fsid = le64_to_cpup((void *)es->s_uuid) ^
5728 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5729 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5730 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5731
5732#ifdef CONFIG_QUOTA
5733 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5734 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5735 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5736#endif
5737 return 0;
5738}
5739
5740
5741#ifdef CONFIG_QUOTA
5742
5743/*
5744 * Helper functions so that transaction is started before we acquire dqio_sem
5745 * to keep correct lock ordering of transaction > dqio_sem
5746 */
5747static inline struct inode *dquot_to_inode(struct dquot *dquot)
5748{
5749 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5750}
5751
5752static int ext4_write_dquot(struct dquot *dquot)
5753{
5754 int ret, err;
5755 handle_t *handle;
5756 struct inode *inode;
5757
5758 inode = dquot_to_inode(dquot);
5759 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5760 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5761 if (IS_ERR(handle))
5762 return PTR_ERR(handle);
5763 ret = dquot_commit(dquot);
5764 err = ext4_journal_stop(handle);
5765 if (!ret)
5766 ret = err;
5767 return ret;
5768}
5769
5770static int ext4_acquire_dquot(struct dquot *dquot)
5771{
5772 int ret, err;
5773 handle_t *handle;
5774
5775 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5776 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5777 if (IS_ERR(handle))
5778 return PTR_ERR(handle);
5779 ret = dquot_acquire(dquot);
5780 err = ext4_journal_stop(handle);
5781 if (!ret)
5782 ret = err;
5783 return ret;
5784}
5785
5786static int ext4_release_dquot(struct dquot *dquot)
5787{
5788 int ret, err;
5789 handle_t *handle;
5790
5791 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5792 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5793 if (IS_ERR(handle)) {
5794 /* Release dquot anyway to avoid endless cycle in dqput() */
5795 dquot_release(dquot);
5796 return PTR_ERR(handle);
5797 }
5798 ret = dquot_release(dquot);
5799 err = ext4_journal_stop(handle);
5800 if (!ret)
5801 ret = err;
5802 return ret;
5803}
5804
5805static int ext4_mark_dquot_dirty(struct dquot *dquot)
5806{
5807 struct super_block *sb = dquot->dq_sb;
5808 struct ext4_sb_info *sbi = EXT4_SB(sb);
5809
5810 /* Are we journaling quotas? */
5811 if (ext4_has_feature_quota(sb) ||
5812 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5813 dquot_mark_dquot_dirty(dquot);
5814 return ext4_write_dquot(dquot);
5815 } else {
5816 return dquot_mark_dquot_dirty(dquot);
5817 }
5818}
5819
5820static int ext4_write_info(struct super_block *sb, int type)
5821{
5822 int ret, err;
5823 handle_t *handle;
5824
5825 /* Data block + inode block */
5826 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5827 if (IS_ERR(handle))
5828 return PTR_ERR(handle);
5829 ret = dquot_commit_info(sb, type);
5830 err = ext4_journal_stop(handle);
5831 if (!ret)
5832 ret = err;
5833 return ret;
5834}
5835
5836/*
5837 * Turn on quotas during mount time - we need to find
5838 * the quota file and such...
5839 */
5840static int ext4_quota_on_mount(struct super_block *sb, int type)
5841{
5842 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5843 EXT4_SB(sb)->s_jquota_fmt, type);
5844}
5845
5846static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5847{
5848 struct ext4_inode_info *ei = EXT4_I(inode);
5849
5850 /* The first argument of lockdep_set_subclass has to be
5851 * *exactly* the same as the argument to init_rwsem() --- in
5852 * this case, in init_once() --- or lockdep gets unhappy
5853 * because the name of the lock is set using the
5854 * stringification of the argument to init_rwsem().
5855 */
5856 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5857 lockdep_set_subclass(&ei->i_data_sem, subclass);
5858}
5859
5860/*
5861 * Standard function to be called on quota_on
5862 */
5863static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5864 const struct path *path)
5865{
5866 int err;
5867
5868 if (!test_opt(sb, QUOTA))
5869 return -EINVAL;
5870
5871 /* Quotafile not on the same filesystem? */
5872 if (path->dentry->d_sb != sb)
5873 return -EXDEV;
5874 /* Journaling quota? */
5875 if (EXT4_SB(sb)->s_qf_names[type]) {
5876 /* Quotafile not in fs root? */
5877 if (path->dentry->d_parent != sb->s_root)
5878 ext4_msg(sb, KERN_WARNING,
5879 "Quota file not on filesystem root. "
5880 "Journaled quota will not work");
5881 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5882 } else {
5883 /*
5884 * Clear the flag just in case mount options changed since
5885 * last time.
5886 */
5887 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5888 }
5889
5890 /*
5891 * When we journal data on quota file, we have to flush journal to see
5892 * all updates to the file when we bypass pagecache...
5893 */
5894 if (EXT4_SB(sb)->s_journal &&
5895 ext4_should_journal_data(d_inode(path->dentry))) {
5896 /*
5897 * We don't need to lock updates but journal_flush() could
5898 * otherwise be livelocked...
5899 */
5900 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5901 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5902 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5903 if (err)
5904 return err;
5905 }
5906
5907 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5908 err = dquot_quota_on(sb, type, format_id, path);
5909 if (err) {
5910 lockdep_set_quota_inode(path->dentry->d_inode,
5911 I_DATA_SEM_NORMAL);
5912 } else {
5913 struct inode *inode = d_inode(path->dentry);
5914 handle_t *handle;
5915
5916 /*
5917 * Set inode flags to prevent userspace from messing with quota
5918 * files. If this fails, we return success anyway since quotas
5919 * are already enabled and this is not a hard failure.
5920 */
5921 inode_lock(inode);
5922 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5923 if (IS_ERR(handle))
5924 goto unlock_inode;
5925 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5926 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5927 S_NOATIME | S_IMMUTABLE);
5928 ext4_mark_inode_dirty(handle, inode);
5929 ext4_journal_stop(handle);
5930 unlock_inode:
5931 inode_unlock(inode);
5932 }
5933 return err;
5934}
5935
5936static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5937 unsigned int flags)
5938{
5939 int err;
5940 struct inode *qf_inode;
5941 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5942 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5943 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5944 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5945 };
5946
5947 BUG_ON(!ext4_has_feature_quota(sb));
5948
5949 if (!qf_inums[type])
5950 return -EPERM;
5951
5952 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5953 if (IS_ERR(qf_inode)) {
5954 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5955 return PTR_ERR(qf_inode);
5956 }
5957
5958 /* Don't account quota for quota files to avoid recursion */
5959 qf_inode->i_flags |= S_NOQUOTA;
5960 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5961 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5962 if (err)
5963 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5964 iput(qf_inode);
5965
5966 return err;
5967}
5968
5969/* Enable usage tracking for all quota types. */
5970static int ext4_enable_quotas(struct super_block *sb)
5971{
5972 int type, err = 0;
5973 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5974 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5975 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5976 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5977 };
5978 bool quota_mopt[EXT4_MAXQUOTAS] = {
5979 test_opt(sb, USRQUOTA),
5980 test_opt(sb, GRPQUOTA),
5981 test_opt(sb, PRJQUOTA),
5982 };
5983
5984 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5985 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5986 if (qf_inums[type]) {
5987 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5988 DQUOT_USAGE_ENABLED |
5989 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5990 if (err) {
5991 ext4_warning(sb,
5992 "Failed to enable quota tracking "
5993 "(type=%d, err=%d). Please run "
5994 "e2fsck to fix.", type, err);
5995 for (type--; type >= 0; type--)
5996 dquot_quota_off(sb, type);
5997
5998 return err;
5999 }
6000 }
6001 }
6002 return 0;
6003}
6004
6005static int ext4_quota_off(struct super_block *sb, int type)
6006{
6007 struct inode *inode = sb_dqopt(sb)->files[type];
6008 handle_t *handle;
6009 int err;
6010
6011 /* Force all delayed allocation blocks to be allocated.
6012 * Caller already holds s_umount sem */
6013 if (test_opt(sb, DELALLOC))
6014 sync_filesystem(sb);
6015
6016 if (!inode || !igrab(inode))
6017 goto out;
6018
6019 err = dquot_quota_off(sb, type);
6020 if (err || ext4_has_feature_quota(sb))
6021 goto out_put;
6022
6023 inode_lock(inode);
6024 /*
6025 * Update modification times of quota files when userspace can
6026 * start looking at them. If we fail, we return success anyway since
6027 * this is not a hard failure and quotas are already disabled.
6028 */
6029 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6030 if (IS_ERR(handle))
6031 goto out_unlock;
6032 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6033 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6034 inode->i_mtime = inode->i_ctime = current_time(inode);
6035 ext4_mark_inode_dirty(handle, inode);
6036 ext4_journal_stop(handle);
6037out_unlock:
6038 inode_unlock(inode);
6039out_put:
6040 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6041 iput(inode);
6042 return err;
6043out:
6044 return dquot_quota_off(sb, type);
6045}
6046
6047/* Read data from quotafile - avoid pagecache and such because we cannot afford
6048 * acquiring the locks... As quota files are never truncated and quota code
6049 * itself serializes the operations (and no one else should touch the files)
6050 * we don't have to be afraid of races */
6051static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6052 size_t len, loff_t off)
6053{
6054 struct inode *inode = sb_dqopt(sb)->files[type];
6055 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6056 int offset = off & (sb->s_blocksize - 1);
6057 int tocopy;
6058 size_t toread;
6059 struct buffer_head *bh;
6060 loff_t i_size = i_size_read(inode);
6061
6062 if (off > i_size)
6063 return 0;
6064 if (off+len > i_size)
6065 len = i_size-off;
6066 toread = len;
6067 while (toread > 0) {
6068 tocopy = sb->s_blocksize - offset < toread ?
6069 sb->s_blocksize - offset : toread;
6070 bh = ext4_bread(NULL, inode, blk, 0);
6071 if (IS_ERR(bh))
6072 return PTR_ERR(bh);
6073 if (!bh) /* A hole? */
6074 memset(data, 0, tocopy);
6075 else
6076 memcpy(data, bh->b_data+offset, tocopy);
6077 brelse(bh);
6078 offset = 0;
6079 toread -= tocopy;
6080 data += tocopy;
6081 blk++;
6082 }
6083 return len;
6084}
6085
6086/* Write to quotafile (we know the transaction is already started and has
6087 * enough credits) */
6088static ssize_t ext4_quota_write(struct super_block *sb, int type,
6089 const char *data, size_t len, loff_t off)
6090{
6091 struct inode *inode = sb_dqopt(sb)->files[type];
6092 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6093 int err, offset = off & (sb->s_blocksize - 1);
6094 int retries = 0;
6095 struct buffer_head *bh;
6096 handle_t *handle = journal_current_handle();
6097
6098 if (EXT4_SB(sb)->s_journal && !handle) {
6099 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6100 " cancelled because transaction is not started",
6101 (unsigned long long)off, (unsigned long long)len);
6102 return -EIO;
6103 }
6104 /*
6105 * Since we account only one data block in transaction credits,
6106 * then it is impossible to cross a block boundary.
6107 */
6108 if (sb->s_blocksize - offset < len) {
6109 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6110 " cancelled because not block aligned",
6111 (unsigned long long)off, (unsigned long long)len);
6112 return -EIO;
6113 }
6114
6115 do {
6116 bh = ext4_bread(handle, inode, blk,
6117 EXT4_GET_BLOCKS_CREATE |
6118 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6119 } while (PTR_ERR(bh) == -ENOSPC &&
6120 ext4_should_retry_alloc(inode->i_sb, &retries));
6121 if (IS_ERR(bh))
6122 return PTR_ERR(bh);
6123 if (!bh)
6124 goto out;
6125 BUFFER_TRACE(bh, "get write access");
6126 err = ext4_journal_get_write_access(handle, bh);
6127 if (err) {
6128 brelse(bh);
6129 return err;
6130 }
6131 lock_buffer(bh);
6132 memcpy(bh->b_data+offset, data, len);
6133 flush_dcache_page(bh->b_page);
6134 unlock_buffer(bh);
6135 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6136 brelse(bh);
6137out:
6138 if (inode->i_size < off + len) {
6139 i_size_write(inode, off + len);
6140 EXT4_I(inode)->i_disksize = inode->i_size;
6141 ext4_mark_inode_dirty(handle, inode);
6142 }
6143 return len;
6144}
6145#endif
6146
6147static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6148 const char *dev_name, void *data)
6149{
6150 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6151}
6152
6153#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6154static inline void register_as_ext2(void)
6155{
6156 int err = register_filesystem(&ext2_fs_type);
6157 if (err)
6158 printk(KERN_WARNING
6159 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6160}
6161
6162static inline void unregister_as_ext2(void)
6163{
6164 unregister_filesystem(&ext2_fs_type);
6165}
6166
6167static inline int ext2_feature_set_ok(struct super_block *sb)
6168{
6169 if (ext4_has_unknown_ext2_incompat_features(sb))
6170 return 0;
6171 if (sb_rdonly(sb))
6172 return 1;
6173 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6174 return 0;
6175 return 1;
6176}
6177#else
6178static inline void register_as_ext2(void) { }
6179static inline void unregister_as_ext2(void) { }
6180static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6181#endif
6182
6183static inline void register_as_ext3(void)
6184{
6185 int err = register_filesystem(&ext3_fs_type);
6186 if (err)
6187 printk(KERN_WARNING
6188 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6189}
6190
6191static inline void unregister_as_ext3(void)
6192{
6193 unregister_filesystem(&ext3_fs_type);
6194}
6195
6196static inline int ext3_feature_set_ok(struct super_block *sb)
6197{
6198 if (ext4_has_unknown_ext3_incompat_features(sb))
6199 return 0;
6200 if (!ext4_has_feature_journal(sb))
6201 return 0;
6202 if (sb_rdonly(sb))
6203 return 1;
6204 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6205 return 0;
6206 return 1;
6207}
6208
6209static struct file_system_type ext4_fs_type = {
6210 .owner = THIS_MODULE,
6211 .name = "ext4",
6212 .mount = ext4_mount,
6213 .kill_sb = kill_block_super,
6214 .fs_flags = FS_REQUIRES_DEV,
6215};
6216MODULE_ALIAS_FS("ext4");
6217
6218/* Shared across all ext4 file systems */
6219wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6220
6221static int __init ext4_init_fs(void)
6222{
6223 int i, err;
6224
6225 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6226 ext4_li_info = NULL;
6227 mutex_init(&ext4_li_mtx);
6228
6229 /* Build-time check for flags consistency */
6230 ext4_check_flag_values();
6231
6232 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6233 init_waitqueue_head(&ext4__ioend_wq[i]);
6234
6235 err = ext4_init_es();
6236 if (err)
6237 return err;
6238
6239 err = ext4_init_pending();
6240 if (err)
6241 goto out7;
6242
6243 err = ext4_init_post_read_processing();
6244 if (err)
6245 goto out6;
6246
6247 err = ext4_init_pageio();
6248 if (err)
6249 goto out5;
6250
6251 err = ext4_init_system_zone();
6252 if (err)
6253 goto out4;
6254
6255 err = ext4_init_sysfs();
6256 if (err)
6257 goto out3;
6258
6259 err = ext4_init_mballoc();
6260 if (err)
6261 goto out2;
6262 err = init_inodecache();
6263 if (err)
6264 goto out1;
6265 register_as_ext3();
6266 register_as_ext2();
6267 err = register_filesystem(&ext4_fs_type);
6268 if (err)
6269 goto out;
6270
6271 return 0;
6272out:
6273 unregister_as_ext2();
6274 unregister_as_ext3();
6275 destroy_inodecache();
6276out1:
6277 ext4_exit_mballoc();
6278out2:
6279 ext4_exit_sysfs();
6280out3:
6281 ext4_exit_system_zone();
6282out4:
6283 ext4_exit_pageio();
6284out5:
6285 ext4_exit_post_read_processing();
6286out6:
6287 ext4_exit_pending();
6288out7:
6289 ext4_exit_es();
6290
6291 return err;
6292}
6293
6294static void __exit ext4_exit_fs(void)
6295{
6296 ext4_destroy_lazyinit_thread();
6297 unregister_as_ext2();
6298 unregister_as_ext3();
6299 unregister_filesystem(&ext4_fs_type);
6300 destroy_inodecache();
6301 ext4_exit_mballoc();
6302 ext4_exit_sysfs();
6303 ext4_exit_system_zone();
6304 ext4_exit_pageio();
6305 ext4_exit_post_read_processing();
6306 ext4_exit_es();
6307 ext4_exit_pending();
6308}
6309
6310MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6311MODULE_DESCRIPTION("Fourth Extended Filesystem");
6312MODULE_LICENSE("GPL");
6313MODULE_SOFTDEP("pre: crc32c");
6314module_init(ext4_init_fs)
6315module_exit(ext4_exit_fs)